A Survey on Personalized and Pluralistic Preference Alignment in Large Language Models
- URL: http://arxiv.org/abs/2504.07070v1
- Date: Wed, 09 Apr 2025 17:39:58 GMT
- Title: A Survey on Personalized and Pluralistic Preference Alignment in Large Language Models
- Authors: Zhouhang Xie, Junda Wu, Yiran Shen, Yu Xia, Xintong Li, Aaron Chang, Ryan Rossi, Sachin Kumar, Bodhisattwa Prasad Majumder, Jingbo Shang, Prithviraj Ammanabrolu, Julian McAuley,
- Abstract summary: We present an analysis of works on personalized alignment and modeling for large language models.<n>We introduce a taxonomy of preference alignment techniques, including training time, inference time, and additionally, user-modeling based methods.
- Score: 52.91062958231693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized preference alignment for large language models (LLMs), the process of tailoring LLMs to individual users' preferences, is an emerging research direction spanning the area of NLP and personalization. In this survey, we present an analysis of works on personalized alignment and modeling for LLMs. We introduce a taxonomy of preference alignment techniques, including training time, inference time, and additionally, user-modeling based methods. We provide analysis and discussion on the strengths and limitations of each group of techniques and then cover evaluation, benchmarks, as well as open problems in the field.
Related papers
- A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications [28.181295575180293]
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation.<n>This paper presents the first comprehensive survey of personalized alignment.<n>We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment.
arXiv Detail & Related papers (2025-03-21T10:09:16Z) - Personalized Multimodal Large Language Models: A Survey [127.9521218125761]
Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities.<n>This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications.
arXiv Detail & Related papers (2024-12-03T03:59:03Z) - Personalization of Large Language Models: A Survey [131.00650432814268]
Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications.
Most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems.
We introduce a taxonomy for personalized LLM usage and summarizing the key differences and challenges.
arXiv Detail & Related papers (2024-10-29T04:01:11Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning.
This survey covers the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs.
arXiv Detail & Related papers (2024-06-17T03:52:51Z) - PoliTune: Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in Large Language Models [1.1704154007740835]
This work investigates the impact of fine-tuning and data selection on economic and political biases in Large Language Models (LLMs)
We introduce PoliTune, a fine-tuning methodology to explore the systematic aspects of aligning LLMs with specific ideologies.
We introduce a systematic method for using the open-source Llama3-70B for dataset selection, annotation, and synthesizing a preferences dataset for Direct Preference Optimization (DPO) to align the model with a given political ideology.
arXiv Detail & Related papers (2024-04-10T16:30:09Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.