Personalization of Large Language Models: A Survey
- URL: http://arxiv.org/abs/2411.00027v1
- Date: Tue, 29 Oct 2024 04:01:11 GMT
- Title: Personalization of Large Language Models: A Survey
- Authors: Zhehao Zhang, Ryan A. Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, Ruiyi Zhang, Jiuxiang Gu, Tyler Derr, Hongjie Chen, Junda Wu, Xiang Chen, Zichao Wang, Subrata Mitra, Nedim Lipka, Nesreen Ahmed, Yu Wang,
- Abstract summary: Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications.
Most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems.
We introduce a taxonomy for personalized LLM usage and summarizing the key differences and challenges.
- Score: 131.00650432814268
- License:
- Abstract: Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
Related papers
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - Guided Profile Generation Improves Personalization with LLMs [3.2685922749445617]
In modern commercial systems, including Recommendation, Ranking, and E-Commerce platforms, there is a trend towards incorporating Personalization context as input into Large Language Models (LLMs)
We propose Guided Profile Generation (GPG), a general method designed to generate personal profiles in natural language.
Our experimental results show that GPG improves LLM's personalization ability across different tasks, for example, it increases 37% accuracy in predicting personal preference compared to directly feeding the LLMs with raw personal context.
arXiv Detail & Related papers (2024-09-19T21:29:56Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests.
This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences.
We propose a novel personalized LLM model, ours. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module.
arXiv Detail & Related papers (2024-09-18T11:54:45Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - Few-shot Personalization of LLMs with Mis-aligned Responses [40.0349773257245]
This paper proposes a new approach for a few-shot personalization of large language models (LLMs)
Our key idea is to learn a set of personalized prompts for each user by progressively improving the prompts using LLMs.
During an iterative process of prompt improvement, we incorporate the contexts of mis-aligned responses by LLMs.
arXiv Detail & Related papers (2024-06-26T18:29:12Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning.
This survey covers the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs.
arXiv Detail & Related papers (2024-06-17T03:52:51Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
The emergence of advanced Large Language Models (LLMs) presents an unprecedented opportunity to automate the complicated process of data annotation.
This survey includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - Personalized Large Language Models [1.0881867638866944]
This paper investigates methods to personalize large language models (LLMs)
Results demonstrate that personalized fine-tuning improves model reasoning compared to non-personalized models.
Experiments on datasets for emotion recognition and hate speech detection show consistent performance gains with personalized methods.
arXiv Detail & Related papers (2024-02-14T15:55:30Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.