Are AI Agents interacting with Online Ads?
- URL: http://arxiv.org/abs/2504.07112v1
- Date: Thu, 20 Mar 2025 08:38:57 GMT
- Title: Are AI Agents interacting with Online Ads?
- Authors: Andreas Stöckl, Joel Nitu,
- Abstract summary: This study examines how different AI agents interact with online advertising, whether they incorporate ads into their decision-making processes, and which ad formats prove most effective.<n>We analyze interaction patterns, click behavior, and decision-making strategies through experiments with multimodal language models such as OpenAI GPT-4o, Anthropic Claude, and Google Gemini 2.0 Flash.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI-driven agents become increasingly integrated into the digital ecosystem, they reshape how online advertising is perceived and processed. Particularly in the travel and hotel booking sector, these autonomous systems influence the effectiveness of traditional advertising formats. While visual cues and emotional appeals sway human users, AI agents prioritize structured data such as price, availability, and specifications. This study examines how different AI agents interact with online advertising, whether they incorporate ads into their decision-making processes, and which ad formats prove most effective. We analyze interaction patterns, click behavior, and decision-making strategies through experiments with multimodal language models such as OpenAI GPT-4o, Anthropic Claude, and Google Gemini 2.0 Flash. Our findings reveal that AI agents neither ignore nor systematically avoid advertisements but instead favor certain features-particularly keywords and structured data. These insights have significant implications for the future design of advertising strategies in AI-dominated digital environments.
Related papers
- FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory [51.96049148869987]
We present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory.
We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents.
Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios.
arXiv Detail & Related papers (2025-04-19T15:29:04Z) - Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it [1.8390952204639035]
This article introduces Agentic AI optimisation (AAIO) as an essential methodology for ensuring effective integration between websites and agentic AI systems.
By examining the mutual interdependency between website optimisation and agentic AI success, it highlights the virtuous cycle that AAIO can create.
The article concludes by affirming AAIO's essential role as part of a fundamental digital infrastructure in the era of autonomous digital agents, advocating for equitable and inclusive access to its benefits.
arXiv Detail & Related papers (2025-04-16T20:38:09Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
This survey paper on offensive AI will comprehensively cover various aspects related to attacks against and using AI systems.
It will delve into the impact of offensive AI practices on different domains, including consumer, enterprise, and public digital infrastructure.
The paper will explore adversarial machine learning, attacks against AI models, infrastructure, and interfaces, along with offensive techniques like information gathering, social engineering, and weaponized AI.
arXiv Detail & Related papers (2024-09-26T17:36:22Z) - Dynamic Explanation Emphasis in Human-XAI Interaction with Communication Robot [2.6396287656676725]
DynEmph is a method for a communication robot to decide where to emphasize XAI-generated explanations with physical expressions.
It predicts the effect of emphasizing certain points on a user and aims to minimize the expected difference between predicted user decisions and AI-suggested ones.
arXiv Detail & Related papers (2024-03-21T16:50:12Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - The Manipulation Problem: Conversational AI as a Threat to Epistemic
Agency [0.0]
The technology of Conversational AI has made significant advancements over the last eighteen months.
conversational agents are likely to be deployed in the near future that are designed to pursue targeted influence objectives.
Sometimes referred to as the "AI Manipulation Problem," the emerging risk is that consumers will unwittingly engage in real-time dialog with predatory AI agents.
arXiv Detail & Related papers (2023-06-19T04:09:16Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - AI-Driven Contextual Advertising: A Technology Report and Implication
Analysis [0.0]
Programmatic advertising consists in automated auctioning of digital ad space.
The interest in contextual advertising is in part a counterreaction to the current dependency on personal data.
Developments in Artificial Intelligence (AI) allow for a deeper semantic understanding of context.
arXiv Detail & Related papers (2022-05-02T13:44:58Z) - Perceptions of Fairness and Trustworthiness Based on Explanations in
Human vs. Automated Decision-Making [0.0]
Automated decision systems (ADS) have become ubiquitous in many high-stakes domains.
We conduct an online study with 200 participants to examine people's perceptions of fairness and trustworthiness towards ADS.
We find that people perceive ADS as fairer than human decision-makers.
arXiv Detail & Related papers (2021-09-13T09:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.