論文の概要: Evolutionary Generation of Random Surreal Numbers for Benchmarking
- arxiv url: http://arxiv.org/abs/2504.07152v1
- Date: Wed, 09 Apr 2025 07:28:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:21:55.452093
- Title: Evolutionary Generation of Random Surreal Numbers for Benchmarking
- Title(参考訳): ベンチマークのためのランダム超現実数の進化的生成
- Authors: Matthew Roughan,
- Abstract要約: 本稿では,ランダムな超現実数のアンサンブルをベンチマークアルゴリズムに生成する手法を提案する。
このアプローチでは、進化的アルゴリズムを使用して、ベンチマークデータセットを生成する。
これは他のタイプのネットワークデータに役立ちそうです。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: There are many areas of scientific endeavour where large, complex datasets are needed for benchmarking. Evolutionary computing provides a means towards creating such sets. As a case study, we consider Conway's Surreal numbers. They have largely been treated as a theoretical construct, with little effort towards empirical study, at least in part because of the difficulty of working with all but the smallest numbers. To advance this status, we need efficient algorithms, and in order to develop such we need benchmark data sets of surreal numbers. In this paper, we present a method for generating ensembles of random surreal numbers to benchmark algorithms. The approach uses an evolutionary algorithm to create the benchmark datasets where we can analyse and control features of the resulting test sets. Ultimately, the process is designed to generate networks with defined properties, and we expect this to be useful for other types of network data.
- Abstract(参考訳): 大規模で複雑なデータセットをベンチマークに必要とする科学的な取り組みには、多くの分野がある。
進化コンピューティングはそのような集合を作るための手段を提供する。
ケーススタディとして、コンウェイの超現実数を考える。
それらは理論的な構成として扱われてきたが、少なくとも最小の数を除く全てのものを扱うことの難しさから、経験論的研究への努力はほとんどない。
この状況を推し進めるためには効率的なアルゴリズムが必要であり、そのためには超現実数のベンチマークデータセットが必要である。
本稿では,ランダムな超現実数のアンサンブルをベンチマークアルゴリズムに生成する手法を提案する。
このアプローチでは、進化的アルゴリズムを使用して、ベンチマークデータセットを作成し、結果のテストセットの機能を分析し、制御することができます。
究極的には、プロセスは定義された特性を持つネットワークを生成するように設計されており、他のタイプのネットワークデータに有用であると考えています。
関連論文リスト
- Encoding of data sets and algorithms [0.0]
多くの高インパクトアプリケーションにおいて、機械学習アルゴリズムの出力品質を保証することが重要である。
我々は、ある指標の観点から、どのモデルが互いに近いかを決定するために、数学的に厳密な理論を開始した。
このグリッドに作用する所定のしきい値メートル法は、それぞれのアルゴリズムと関心のデータセットから、任意のアプリケーションに近接性(または統計的距離)を表現します。
論文 参考訳(メタデータ) (2023-03-02T05:29:27Z) - Degree-Based Random Walk Approach for Graph Embedding [0.0]
計算量が少なく,ノード接続性に配慮した一様サンプリング手法を提案する。
提案アルゴリズムの利点は,大規模グラフに適用した場合にさらに向上する。
論文 参考訳(メタデータ) (2021-10-21T19:16:16Z) - A Framework and Benchmarking Study for Counterfactual Generating Methods
on Tabular Data [0.0]
カウンターファクトな説明は、機械学習の予測を説明する効果的な方法と見なされる。
このような説明を導き出そうとするアルゴリズムは、すでに数十ある。
ベンチマーク研究とフレームワークは、実践者がどのテクニックとビルディングブロックが最も適しているかを決定するのに役立ちます。
論文 参考訳(メタデータ) (2021-07-09T21:06:03Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
本稿では,未知数の幾何学的モデル,例えばホモグラフィーを求めるアルゴリズムを提案する。
複数の幾何モデルを用いることで精度が向上するアプリケーションをいくつか提示する。
これには、複数の一般化されたホモグラフからのポーズ推定、高速移動物体の軌道推定が含まれる。
論文 参考訳(メタデータ) (2021-03-25T14:35:07Z) - Clustering multivariate functional data using unsupervised binary trees [0.0]
本研究では,汎用関数データに対するモデルに基づくクラスタリングアルゴリズムを提案する。
ランダム関数データ実現は、定義領域内の離散的、おそらくランダムな点において誤差で測定することができる。
新しいアルゴリズムは、簡単に解釈可能な結果とオンラインデータセットの迅速な予測を提供します。
論文 参考訳(メタデータ) (2020-12-10T20:56:49Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Refined bounds for algorithm configuration: The knife-edge of dual class
approximability [94.83809668933021]
トレーニングセットが、トレーニングセット上でのパラメータの平均メトリックのパフォーマンスが、予想される将来的なパフォーマンスに最も近いことを保証するために、どの程度の規模が必要かを調査する。
この近似が L-無限ノルムの下で成り立つなら、強いサンプル複雑性境界を与えることができる。
我々は、コンピュータ科学において最も強力なツールの一つである整数プログラミングの文脈において、我々の限界を実証的に評価する。
論文 参考訳(メタデータ) (2020-06-21T15:32:21Z) - NWPU-Crowd: A Large-Scale Benchmark for Crowd Counting and Localization [101.13851473792334]
我々は,5,109枚の画像からなる大規模集束群集NWPU-Crowdを構築し,合計2,133,375個の点と箱を付加したアノテートヘッドを構築した。
他の実世界のデータセットと比較すると、様々な照明シーンを含み、最大密度範囲 (020,033) を持つ。
本稿では,データ特性について述べるとともに,主要なSOTA(State-of-the-art)手法の性能を評価し,新たなデータに生じる問題を分析する。
論文 参考訳(メタデータ) (2020-01-10T09:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。