Modeling Response Consistency in Multi-Agent LLM Systems: A Comparative Analysis of Shared and Separate Context Approaches
- URL: http://arxiv.org/abs/2504.07303v1
- Date: Wed, 09 Apr 2025 21:54:21 GMT
- Title: Modeling Response Consistency in Multi-Agent LLM Systems: A Comparative Analysis of Shared and Separate Context Approaches
- Authors: Tooraj Helmi,
- Abstract summary: We introduce the Response Consistency Index (RCI) as a metric to evaluate the effects of context limitations, noise, and inter-agent dependencies on system performance.<n>Our approach differs from existing research by focusing on the interplay between memory constraints and noise management.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly utilized in multi-agent systems (MAS) to enhance collaborative problem-solving and interactive reasoning. Recent advancements have enabled LLMs to function as autonomous agents capable of understanding complex interactions across multiple topics. However, deploying LLMs in MAS introduces challenges related to context management, response consistency, and scalability, especially when agents must operate under memory limitations and handle noisy inputs. While prior research has explored optimizing context sharing and response latency in LLM-driven MAS, these efforts often focus on either fully centralized or decentralized configurations, each with distinct trade-offs. In this paper, we develop a probabilistic framework to analyze the impact of shared versus separate context configurations on response consistency and response times in LLM-based MAS. We introduce the Response Consistency Index (RCI) as a metric to evaluate the effects of context limitations, noise, and inter-agent dependencies on system performance. Our approach differs from existing research by focusing on the interplay between memory constraints and noise management, providing insights into optimizing scalability and response times in environments with interdependent topics. Through this analysis, we offer a comprehensive understanding of how different configurations impact the efficiency of LLM-driven multi-agent systems, thereby guiding the design of more robust architectures.
Related papers
- TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data [33.5606443790794]
Large language models (LLMs) have made breakthroughs in contextual inference and domain knowledge integration.
We propose a tool-assisted LLM agent with multi-modality observation data, namely TAMO, for fine-grained root cause analysis.
arXiv Detail & Related papers (2025-04-29T06:50:48Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.<n>It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.<n>The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
This paper introduces a benchmarking framework to assess large language models (LLMs)<n>It integrates generative agent simulation to evaluate performance on key dimensions: information extraction, context awareness, and adaptive engagement.<n>Results show that adaptive strategies improve data extraction accuracy, especially when handling ambiguous responses.
arXiv Detail & Related papers (2025-02-04T15:47:47Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models [0.0]
We introduce a dynamic benchmarking system for conversational agents that evaluates their performance through a single, simulated, and lengthy user interaction.
We context switch regularly to interleave the tasks, which constructs a realistic testing scenario in which we assess the Long-Term Memory, Continual Learning, and Information Integration capabilities of the agents.
arXiv Detail & Related papers (2024-09-30T12:01:29Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.