論文の概要: Decomposition-Based Optimal Bounds for Privacy Amplification via Shuffling
- arxiv url: http://arxiv.org/abs/2504.07414v1
- Date: Thu, 10 Apr 2025 03:11:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:24:02.163819
- Title: Decomposition-Based Optimal Bounds for Privacy Amplification via Shuffling
- Title(参考訳): シャッフルによるプライバシー増幅のための分解に基づく最適境界
- Authors: Pengcheng Su, Haibo Cheng, Ping Wang,
- Abstract要約: Shufflingは、より強力なプライバシーユーティリティトレードオフを提供する、差分プライバシー保証を増幅することが示されている。
我々は,すべての可能な分解を包含する統合分析フレームワーク,すなわち一般的なクローンパラダイムを導入する。
最適なプライバシアンプリフィケーション境界の正確な値を計算するための,単純かつ効率的なアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 6.702635586444281
- License:
- Abstract: Shuffling has been shown to amplify differential privacy guarantees, offering a stronger privacy-utility trade-off. To characterize and compute this amplification, two fundamental analytical frameworks have been proposed: the privacy blanket by Balle et al. (CRYPTO 2019) and the clone paradigm (including both the standard clone and stronger clone) by Feldman et al. (FOCS 2021, SODA 2023). All these methods rely on decomposing local randomizers. In this work, we introduce a unified analysis framework--the general clone paradigm--which encompasses all possible decompositions. We identify the optimal decomposition within the general clone paradigm. Moreover, we develop a simple and efficient algorithm to compute the exact value of the optimal privacy amplification bounds via Fast Fourier Transform. Experimental results demonstrate that the computed upper bounds for privacy amplification closely approximate the lower bounds, highlighting the tightness of our approach. Finally, using our algorithm, we conduct the first systematic analysis of the joint composition of LDP protocols in the shuffle model.
- Abstract(参考訳): Shufflingは、より強力なプライバシーユーティリティトレードオフを提供する、差分プライバシー保証を増幅することが示されている。
この増幅を特徴づけ、計算するために、Balle et al(CRYPTO 2019)のプライバシ・毛布とFeldman et al(FOCS 2021, SODA 2023)のクローン・パラダイム(標準クローンとより強力なクローンの両方を含む)の2つの基本的な分析フレームワークが提案されている。
これらの手法は全て局所確率化器の分解に依存している。
本研究では,すべての可能な分解を包含する統合分析フレームワーク,一般クローンパラダイムを導入する。
一般クローンパラダイムにおける最適分解を同定する。
さらに,Fast Fourier Transformを用いて,最適プライバシー増幅境界の正確な値を計算するための,シンプルで効率的なアルゴリズムを開発した。
実験の結果,プライバシを増幅するための計算上界は下界を近似し,アプローチの厳密さを強調した。
最後に,本アルゴリズムを用いて,シャッフルモデルにおけるLDPプロトコルの結合構成を初めて体系的に解析する。
関連論文リスト
- Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization [55.81991984375959]
本研究では、以下の簡単な観察を通して、個別化されたプライバシ会計を解析する新しい手法を提案する。
我々は、分解可能な部分モジュラーおよびセットアルゴリズム被覆を含む、プライベート最適化問題に対するいくつかの改良されたアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-05-28T19:02:30Z) - Shifted Interpolation for Differential Privacy [6.1836947007564085]
雑音勾配降下とその変種は、微分プライベート機械学習の主要なアルゴリズムである。
本稿では、$f$差分プライバシの統一化フレームワークにおいて、"corollary によるプライバシ増幅" 現象を確立する。
これは、強力な凸最適化の基礎的な設定において、最初の正確なプライバシー分析につながる。
論文 参考訳(メタデータ) (2024-03-01T04:50:04Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Stronger Privacy Amplification by Shuffling for R\'enyi and Approximate
Differential Privacy [43.33288245778629]
このモデルにおける重要な結果は、ランダムにランダム化されたデータをランダムにシャッフルすると、差分プライバシー保証が増幅されることである。
このような増幅は、匿名でデータが提供されるシステムにおいて、はるかに強力なプライバシー保証を意味する。
本研究では,理論的にも数値的にも,アートプライバシの増幅状態を改善する。
論文 参考訳(メタデータ) (2022-08-09T08:13:48Z) - Private Alternating Least Squares: Practical Private Matrix Completion
with Tighter Rates [34.023599653814415]
ユーザレベルのプライバシの下で、差分的プライベート(DP)行列補完の問題について検討する。
本稿では,Alternating-Least-Squares (ALS) 方式の差分型を設計する。
論文 参考訳(メタデータ) (2021-07-20T23:19:11Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
プライバシー保護統計のレンズによるガウス過程(GP)帯域最適化の至るところでの問題点を考察する。
均一なカーネル近似器とランダムな摂動を組み合わせた差分プライベートGPバンディット最適化のためのソリューションを提案する。
我々のアルゴリズムは最適化手順を通して微分プライバシを保持し、予測のためのサンプルパスに明示的に依存しない。
論文 参考訳(メタデータ) (2021-02-24T18:52:24Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。