論文の概要: Emergency Communication: OTFS-Based Semantic Transmission with Diffusion Noise Suppression
- arxiv url: http://arxiv.org/abs/2504.07420v1
- Date: Thu, 10 Apr 2025 03:25:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:24:11.797940
- Title: Emergency Communication: OTFS-Based Semantic Transmission with Diffusion Noise Suppression
- Title(参考訳): 緊急通信:拡散雑音抑制を用いたOTFSに基づく意味伝達
- Authors: Kexin Zhang, Xin Zhang, Lixin Li, Wensheng Lin, Wenchi Cheng, Qinghe Du,
- Abstract要約: 無人航空機(UAV)は、災害に遭った地域での緊急通信のための重要なプラットフォームとして登場した。
高速移動シナリオにおける複雑なチャネル条件は、従来の通信システムの信頼性と効率に大きな影響を及ぼす。
本稿では,OTFS(Orthogonal Time Frequency Space)変調,セマンティック通信,拡散に基づくデノナイジングモジュールを統合した,インテリジェントな緊急通信フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.570783426020327
- License:
- Abstract: Due to their flexibility and dynamic coverage capabilities, Unmanned Aerial Vehicles (UAVs) have emerged as vital platforms for emergency communication in disaster-stricken areas. However, the complex channel conditions in high-speed mobile scenarios significantly impact the reliability and efficiency of traditional communication systems. This paper presents an intelligent emergency communication framework that integrates Orthogonal Time Frequency Space (OTFS) modulation, semantic communication, and a diffusion-based denoising module to address these challenges. OTFS ensures robust communication under dynamic channel conditions due to its superior anti-fading characteristics and adaptability to rapidly changing environments. Semantic communication further enhances transmission efficiency by focusing on key information extraction and reducing data redundancy. Moreover, a diffusion-based channel denoising module is proposed to leverage the gradual noise reduction process and statistical noise modeling, optimizing the accuracy of semantic information recovery. Experimental results demonstrate that the proposed solution significantly improves link stability and transmission performance in high-mobility UAV scenarios, achieving at least a 3dB SNR gain over existing methods.
- Abstract(参考訳): 柔軟性とダイナミックなカバー能力のため、無人航空機(UAV)は災害に遭った地域での緊急通信のための重要なプラットフォームとして登場した。
しかし、高速移動シナリオにおける複雑なチャネル条件は、従来の通信システムの信頼性と効率に大きな影響を及ぼす。
本稿では,これらの課題に対処するために,直交時間周波数空間(OTFS)変調,セマンティック通信,拡散型デノナイジングモジュールを統合したインテリジェントな緊急通信フレームワークを提案する。
OTFSは、動的チャネル条件下での堅牢な通信を保証する。
セマンティック通信は、キー情報抽出とデータ冗長性の低減に着目して、送信効率をさらに向上する。
さらに,拡散型チャネルデノナイジングモジュールを提案し,段階的なノイズ低減プロセスと統計的ノイズモデリングを活用し,セマンティック情報回復の精度を最適化した。
実験結果から,提案手法は高移動度UAVシナリオにおけるリンク安定性と伝送性能を著しく向上し,既存の手法よりも少なくとも3dB SNRのゲインを達成できることが示唆された。
関連論文リスト
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
無人航空機(UAV)は、地上通信を改善するための航空基地局(BS)として登場した。
この作業では、UAV対応仮想アンテナアレイによる協調ビームフォーミングを使用して、UAVから地上モバイルユーザへの伝送性能を向上させる。
論文 参考訳(メタデータ) (2025-02-09T09:15:47Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Vaccinating Federated Learning for Robust Modulation Classification in Distributed Wireless Networks [0.0]
雑音レベルの異なる信号間の一般化性向上を目的とした新しいAMCモデルであるFedVaccineを提案する。
FedVaccineは、分割学習戦略を用いることで、既存のFLベースのAMCモデルの線形集約の限界を克服する。
これらの結果は、実用的な無線ネットワーク環境におけるAMCシステムの信頼性と性能を高めるためのFedVaccineの可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-10-16T17:48:47Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
本稿では,ソースデータのアウトレイラを処理するために,遅延拡散モデルを用いたSemComシステムを開発した。
軽量な単層遅延空間変換アダプタは、送信機でのワンショット学習を完了させる。
終端整合蒸留法を用いて, 潜時空間で訓練した拡散模型を蒸留する。
論文 参考訳(メタデータ) (2024-06-09T23:39:31Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
一般マルチインプット・マルチアウトプット(MIMO)干渉チャネルに対するインターフェクト・ロバスト・セマンティック通信(IRSC)方式を提案する。
このスキームはニューラルネットワーク(NN)に基づくトランシーバの開発を伴い、チャネル状態情報(CSI)を受信機のみ、または送信機と受信機の両方の端で統合する。
実験結果から、IRSC方式は干渉を緩和し、ベースラインアプローチより優れることを示す。
論文 参考訳(メタデータ) (2024-04-10T11:40:22Z) - Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications [12.218161437914118]
無線チャネル上でのデータ伝送と再構成を強化するために,条件付き拡散確率モデル(DDPM)を提案する。
これに触発された鍵となる考え方は、情報信号の「ノイズからクリーン」変換を学ぶ際に、拡散モデルの生成的先行性を活用することである。
提案手法は,情報内容の事前知識が利用可能な通信シナリオに有効である。
論文 参考訳(メタデータ) (2023-10-30T11:33:01Z) - Asymmetric Diffusion Based Channel-Adaptive Secure Wireless Semantic
Communications [5.539381022630274]
拡散モデルと深部強化学習(DRL)を利用したセキュアな意味コミュニケーションシステムDiffuSeCを提案する。
送信側端の拡散モジュールと受信側端の非対称なdenoisingモジュールにより、DiffuSeCはセマンティックアタックによって追加された摂動を緩和する。
セマンティックアタックによる不安定なチャネル条件下でのロバスト性をさらに向上するため,DRLに基づくチャネル適応拡散ステップ選択方式を開発した。
論文 参考訳(メタデータ) (2023-10-30T11:00:47Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
このレターでは、レート分割多重アクセスネットワークにおいて、ユーザの電力割り当てを最適化するための新しいフレームワークを紹介します。
ネットワークでは、ユーザのために意図されたメッセージは、単一の共通部分と個々のプライベート部分に分割される。
論文 参考訳(メタデータ) (2021-07-01T06:32:49Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
無人航空機(UAV)搭載のインテリジェントリフレクタ(IR)を用いた新しい通信フレームワークを提案する。
ダウンリンク和率を最大化するために、最適プリコーディング行列(基地局)と反射係数(IR)を共同で導出する。
論文 参考訳(メタデータ) (2020-11-03T16:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。