Enhancing Player Enjoyment with a Two-Tier DRL and LLM-Based Agent System for Fighting Games
- URL: http://arxiv.org/abs/2504.07425v1
- Date: Thu, 10 Apr 2025 03:38:06 GMT
- Title: Enhancing Player Enjoyment with a Two-Tier DRL and LLM-Based Agent System for Fighting Games
- Authors: Shouren Wang, Zehua Jiang, Fernando Sliva, Sam Earle, Julian Togelius,
- Abstract summary: We propose a two-tier agent system and conduct experiments in the classic fighting game Street Fighter II.<n>The first tier of TTA employs a task-oriented network architecture, modularized reward functions, and hybrid training to produce diverse and skilled DRL agents.<n>In the second tier of TTA, a Large Language Model Hyper-Agent, leveraging players' playing data and feedback, dynamically selects suitable DRL opponents.
- Score: 41.463376100442396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (DRL) has effectively enhanced gameplay experiences and game design across various game genres. However, few studies on fighting game agents have focused explicitly on enhancing player enjoyment, a critical factor for both developers and players. To address this gap and establish a practical baseline for designing enjoyability-focused agents, we propose a two-tier agent (TTA) system and conducted experiments in the classic fighting game Street Fighter II. The first tier of TTA employs a task-oriented network architecture, modularized reward functions, and hybrid training to produce diverse and skilled DRL agents. In the second tier of TTA, a Large Language Model Hyper-Agent, leveraging players' playing data and feedback, dynamically selects suitable DRL opponents. In addition, we investigate and model several key factors that affect the enjoyability of the opponent. The experiments demonstrate improvements from 64. 36% to 156. 36% in the execution of advanced skills over baseline methods. The trained agents also exhibit distinct game-playing styles. Additionally, we conducted a small-scale user study, and the overall enjoyment in the player's feedback validates the effectiveness of our TTA system.
Related papers
- AVA: Attentive VLM Agent for Mastering StarCraft II [56.07921367623274]
We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience.<n>Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay.
arXiv Detail & Related papers (2025-03-07T12:54:25Z) - Reinforcing Competitive Multi-Agents for Playing So Long Sucker [0.393259574660092]
This paper examines the use of classical deep reinforcement learning (DRL) algorithms, DQN, DDQN, and Dueling DQN, in the strategy game So Long Sucker.
The study's primary goal is to teach autonomous agents the game's rules and strategies using classical DRL methods.
arXiv Detail & Related papers (2024-11-17T12:38:13Z) - Reinforcement Learning for High-Level Strategic Control in Tower Defense Games [47.618236610219554]
In strategy games, one of the most important aspects of game design is maintaining a sense of challenge for players.
We propose an automated approach that combines traditional scripted methods with reinforcement learning.
Results show that combining a learned approach, such as reinforcement learning, with a scripted AI produces a higher-performing and more robust agent than using only AI.
arXiv Detail & Related papers (2024-06-12T08:06:31Z) - Behavioural Cloning in VizDoom [1.4999444543328293]
This paper describes methods for training autonomous agents to play the game "Doom 2" through Imitation Learning (IL)
We also explore how Reinforcement Learning (RL) compares to IL for humanness by comparing camera movement and trajectory data.
arXiv Detail & Related papers (2024-01-08T16:15:43Z) - Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play [12.754819077905061]
Minimax Exploiter is a game theoretic approach to exploiting Main Agents that leverages knowledge of its opponents.
We validate our approach in a diversity of settings, including simple turn based games, the arcade learning environment, and For Honor, a modern video game.
arXiv Detail & Related papers (2023-11-28T19:34:40Z) - Mastering Asymmetrical Multiplayer Game with Multi-Agent
Asymmetric-Evolution Reinforcement Learning [8.628547849796615]
Asymmetrical multiplayer (AMP) game is a popular game genre which involves multiple types of agents competing or collaborating in the game.
It is difficult to train powerful agents that can defeat top human players in AMP games by typical self-play training method because of unbalancing characteristics in their asymmetrical environments.
We propose asymmetric-evolution training (AET), a novel multi-agent reinforcement learning framework that can train multiple kinds of agents simultaneously in AMP game.
arXiv Detail & Related papers (2023-04-20T07:14:32Z) - Mastering the Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning [95.78031053296513]
No-press Diplomacy is a complex strategy game involving both cooperation and competition.
We introduce a planning algorithm we call DiL-piKL that regularizes a reward-maximizing policy toward a human imitation-learned policy.
We show that DiL-piKL can be extended into a self-play reinforcement learning algorithm we call RL-DiL-piKL.
arXiv Detail & Related papers (2022-10-11T14:47:35Z) - TiKick: Toward Playing Multi-agent Football Full Games from Single-agent
Demonstrations [31.596018856092513]
Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
To the best of our knowledge, Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
arXiv Detail & Related papers (2021-10-09T08:34:58Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games [137.86426963572214]
We introduce DeepCrawl, a fully-playable Roguelike prototype for iOS and Android in which all agents are controlled by policy networks trained using Deep Reinforcement Learning (DRL)
Our aim is to understand whether recent advances in DRL can be used to develop convincing behavioral models for non-player characters in videogames.
arXiv Detail & Related papers (2020-12-03T13:53:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.