論文の概要: ELUQuant: Event-Level Uncertainty Quantification in Deep Inelastic
Scattering
- arxiv url: http://arxiv.org/abs/2310.02913v1
- Date: Wed, 4 Oct 2023 15:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 14:21:41.761051
- Title: ELUQuant: Event-Level Uncertainty Quantification in Deep Inelastic
Scattering
- Title(参考訳): ELUQuant: 深部非弾性散乱における事象レベル不確かさの定量化
- Authors: Cristiano Fanelli, James Giroux
- Abstract要約: 物理事象レベルでの詳細な不確実性定量化(UQ)のための流れを近似した物理インフォームドベイズニューラルネットワーク(BNN)を提案する。
Deep Inelastic Scattering (DIS) イベントに適用すると、我々のモデルはキネティック変数 $x$, $Q2$, $y$ を効果的に抽出する。
根底にある不確実性に関するこの詳細な説明は、特にイベントフィルタリングのようなタスクにおいて、意思決定には重要でないことを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a physics-informed Bayesian Neural Network (BNN) with flow
approximated posteriors using multiplicative normalizing flows (MNF) for
detailed uncertainty quantification (UQ) at the physics event-level. Our method
is capable of identifying both heteroskedastic aleatoric and epistemic
uncertainties, providing granular physical insights. Applied to Deep Inelastic
Scattering (DIS) events, our model effectively extracts the kinematic variables
$x$, $Q^2$, and $y$, matching the performance of recent deep learning
regression techniques but with the critical enhancement of event-level UQ. This
detailed description of the underlying uncertainty proves invaluable for
decision-making, especially in tasks like event filtering. It also allows for
the reduction of true inaccuracies without directly accessing the ground truth.
A thorough DIS simulation using the H1 detector at HERA indicates possible
applications for the future EIC. Additionally, this paves the way for related
tasks such as data quality monitoring and anomaly detection. Remarkably, our
approach effectively processes large samples at high rates.
- Abstract(参考訳): 物理事象レベルでの詳細な不確実性定量化(UQ)のために、乗法正規化フロー(MNF)を用いて、流れを近似した後部を有する物理インフォームドベイズニューラルネットワーク(BNN)を導入する。
本手法は, 異所性失語症とてんかん性不確実性の両方を同定し, 具体的知見を提供する。
深部非弾性散乱(dis)イベントに適用すると,このモデルは,最近の深部学習回帰手法のパフォーマンスにマッチするが,イベントレベルのuqのクリティカルな拡張と合わせて,x$,$q^2$,$y$のキネマティック変数を効果的に抽出する。
根底にある不確実性に関するこの詳細な説明は、特にイベントフィルタリングのようなタスクにおいて、意思決定に重要なことを証明している。
また、根拠となる真理に直接アクセスすることなく、真の不正確さを低減できる。
HERAのH1検出器を用いた完全なDisdisシミュレーションは将来のEICへの応用の可能性を示している。
さらに、これはデータ品質の監視や異常検出といった関連するタスクの道を開く。
注目すべきは、我々のアプローチが大規模サンプルを高速で効果的に処理することである。
関連論文リスト
- Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning [1.8175282137722093]
科学機械学習(SciML)における不確実性(UQ)は、SciMLの強力な予測力と、学習したモデルの信頼性を定量化する方法を組み合わせる。
我々は、SciMLと粘性ハミルトン-ヤコビ偏微分方程式(HJ PDE)で生じるいくつかのベイズ推論問題の間の新しい理論的関係を確立することにより、UQ問題に対する新しい解釈を提供する。
我々はモデル予測を継続的に更新する際の計算上の利点を提供する新しいRacatiベースの方法論を開発した。
論文 参考訳(メタデータ) (2024-04-12T20:54:01Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
データ忠実度向上のためのCNNベースの手法は、トレーニング期間中の低忠実度データパターンと分布に依存している。
提案したモデルである物理インフォームド残差拡散(Residual Diffusion)は、標準の低忠実度入力からデータの品質を高める能力を示す。
実験結果から, 2次元乱流に対して, 再学習を必要とせず, 高品質な流れを効果的に再現できることが示唆された。
論文 参考訳(メタデータ) (2024-04-12T11:45:51Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - DynamoPMU: A Physics Informed Anomaly Detection and Prediction
Methodology using non-linear dynamics from $\mu$PMU Measurement Data [0.0]
我々は、$mu$PMUストリーミングデータの異常を検知し、制御方程式を用いてイベントを同時に予測する物理力学に基づくアプローチを開発した。
提案手法の有効性を,LBNL分布グリッドから得た実際の$mu$PMUデータの解析により実証する。
論文 参考訳(メタデータ) (2023-03-31T19:32:24Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
本稿では,科学的機械学習タスクのための情報ボトルネック(IB-UQ)による不確実性定量化のための新しいフレームワークを提案する。
我々は,入力データの信頼度に応じて,入力を潜在表現に符号化する信頼認識エンコーダによってボトルネックを埋め込む。
また,外挿不確かさの質を高めるために,データ拡張に基づく情報ボトルネック目標を提案する。
論文 参考訳(メタデータ) (2023-02-07T05:56:42Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
本稿では,ベイズニューラルネットワークを用いた高次元レベル集合推定問題を解く新しい手法を提案する。
各問題に対して対応する理論情報に基づく取得関数を導出してデータポイントをサンプリングする。
合成データセットと実世界データセットの数値実験により,提案手法は既存手法よりも優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2020-12-17T23:21:53Z) - Efficient Uncertainty Quantification for Dynamic Subsurface Flow with
Surrogate by Theory-guided Neural Network [0.0]
理論誘導ニューラルネットワーク(TgNN)により構築された代理体を用いた動的地下流れの効率的な不確実性定量化手法を提案する。
パラメータ、時間、位置はニューラルネットワークの入力であり、関心の量は出力である。
トレーニングされたニューラルネットワークは、新しいパラメータで地下流れ問題の解を予測することができる。
論文 参考訳(メタデータ) (2020-04-25T12:41:57Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。