Quantum error correction via multi-particle discrete-time quantum walk
- URL: http://arxiv.org/abs/2504.07941v2
- Date: Fri, 25 Apr 2025 02:06:47 GMT
- Title: Quantum error correction via multi-particle discrete-time quantum walk
- Authors: Ryo Asaka, Ryusei Minamikawa,
- Abstract summary: We propose a scheme of quantum error correction that employs a multi-particle quantum walk defined on nested squares.<n>In this model, each particle moves within its own distinct square through iterations of three discrete-time steps.<n>By exploiting gauge symmetry, our scheme achieves redundant encoding, error correction, and arbitrary operations on the encoded information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scheme of quantum error correction that employs a multi-particle quantum walk defined on nested squares, each hosting a single particle. In this model, each particle moves within its own distinct square through iterations of three discrete-time steps. First, a particle updates its two-level internal coin state. Next, it either moves to an adjacent vertex or stays put, depending on the outcome. Finally, it interacts with another particle if these particles arrive at the nearest-neighbor vertices of the two adjacent squares, acquiring a phase factor of $-1$. Because a single particle represents a three-qubit state through its position and coin state, Shor's nine-qubit code is implemented using only three particles, with two additional particles for syndrome measurement. Furthermore, by exploiting gauge symmetry, our scheme achieves redundant encoding, error correction, and arbitrary operations on the encoded information using only nearest-neighbor interactions.
Related papers
- Quantum walk on a square lattice with identical particles [0.0]
We investigate quantum superposition effects in two-dimensional quantum walks of identical particles with different statistics under particle exchange.
We focus on joint properties such as two-particle coincidence probabilities and the spread velocity of the inter-particle distance.
We discuss the potential for implementing this model using integrated photonic circuits by exploiting $N$-partite entanglement between individual photons.
arXiv Detail & Related papers (2025-04-15T11:33:08Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Designing three-way entangled and nonlocal two-way entangled single particle states via alternate quantum walks [0.0]
We generate genuine three-way entanglement from an initially separable state involving three degrees of freedom of a quantum particle.<n>We also generate optimal nonlocal two-way entanglement, quantified by the negativity between the nonlocal position degrees of freedom of the particle.
arXiv Detail & Related papers (2024-02-07T18:33:28Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Two-Particle Scattering on Non-Translation Invariant Line Lattices [0.0]
Quantum walks have been used to develop quantum algorithms since their inception.
We show that a CPHASE gate can be achieved with high fidelity when the interaction acts only on a small portion of the line graph.
arXiv Detail & Related papers (2023-03-08T02:36:29Z) - Optimization for the propagation of a multiparticle quantum walk in a one-dimensional lattice [0.0]
It has been known that a single particle can be propagated by a discrete-time quantum walk with a quadratic time scaling in the variance of position distribution, beating the linear time scaling in a classical random walk.<n>We study the evolution of position distribution for multiple particles in the long-time limit, and analytically optimize the joint coin state to derive the maximum variance of the position distribution between the particles.<n>An interesting result is that an optimized coin state always possesses specific exchange symmetry which can be characterized by a graph consisting of two disconnected complete subgraphs.
arXiv Detail & Related papers (2022-12-11T09:13:39Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Probing the edge between integrability and quantum chaos in interacting
few-atom systems [0.0]
We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in one-dimensional multi-well potentials.
We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen.
arXiv Detail & Related papers (2021-04-27T01:40:02Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Quantum walks of interacting Mott insulator defects with three-body
interactions [0.0]
We analyze the quantum walk of interacting defects on top of an uniform bosonic Mott insulator at unit filling in an one dimensional graph.
The case of two particles exhibits interesting phenomenon of quantum walk reversal as a function of additional onsite three-body attractive interactions.
arXiv Detail & Related papers (2020-01-23T14:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.