論文の概要: Detect Anything 3D in the Wild
- arxiv url: http://arxiv.org/abs/2504.07958v1
- Date: Thu, 10 Apr 2025 17:59:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:20:35.649895
- Title: Detect Anything 3D in the Wild
- Title(参考訳): 野生の3Dを検知する
- Authors: Hanxue Zhang, Haoran Jiang, Qingsong Yao, Yanan Sun, Renrui Zhang, Hao Zhao, Hongyang Li, Hongzi Zhu, Zetong Yang,
- Abstract要約: DetAny3Dは任意のカメラ構成で新しい物体を検知できる3D検出基盤モデルである。
2D知識を3Dに効果的に転送するために、DetAny3Dは2DアグリゲータとZero-Embedding Mappingによる3Dインタプリタという2つのコアモジュールを組み込んでいる。
DetAny3Dは、未確認のカテゴリや新しいカメラ構成の最先端性能を実現する。
- 参考スコア(独自算出の注目度): 34.293450721860616
- License:
- Abstract: Despite the success of deep learning in close-set 3D object detection, existing approaches struggle with zero-shot generalization to novel objects and camera configurations. We introduce DetAny3D, a promptable 3D detection foundation model capable of detecting any novel object under arbitrary camera configurations using only monocular inputs. Training a foundation model for 3D detection is fundamentally constrained by the limited availability of annotated 3D data, which motivates DetAny3D to leverage the rich prior knowledge embedded in extensively pre-trained 2D foundation models to compensate for this scarcity. To effectively transfer 2D knowledge to 3D, DetAny3D incorporates two core modules: the 2D Aggregator, which aligns features from different 2D foundation models, and the 3D Interpreter with Zero-Embedding Mapping, which mitigates catastrophic forgetting in 2D-to-3D knowledge transfer. Experimental results validate the strong generalization of our DetAny3D, which not only achieves state-of-the-art performance on unseen categories and novel camera configurations, but also surpasses most competitors on in-domain data.DetAny3D sheds light on the potential of the 3D foundation model for diverse applications in real-world scenarios, e.g., rare object detection in autonomous driving, and demonstrates promise for further exploration of 3D-centric tasks in open-world settings. More visualization results can be found at DetAny3D project page.
- Abstract(参考訳): 近接した3Dオブジェクト検出におけるディープラーニングの成功にもかかわらず、既存のアプローチでは、新しいオブジェクトやカメラ構成へのゼロショットの一般化に苦労している。
DetAny3Dは、任意のカメラ構成下で、モノクロ入力のみを用いて、任意の新しい物体を検出することができる3D検出基盤モデルである。
3D検出のための基礎モデルのトレーニングは、アノテーション付き3Dデータの可用性が限られているため、DetAny3Dはこの不足を補うために、広範囲に事前訓練された2D基礎モデルに埋め込まれた豊富な事前知識を活用する動機となっている。
2D知識を3Dに効果的に転送するために、DetAny3Dは、2D基礎モデルから特徴を整列する2Dアグリゲータと、2Dから3Dの知識伝達における破滅的な忘れを緩和するゼロ埋め込みマッピングを備えた3Dインタプリタという2つのコアモジュールを組み込んでいる。
DetAny3Dは、未確認のカテゴリや新しいカメラ構成で最先端のパフォーマンスを達成するだけでなく、ドメイン内のデータでも競争相手に勝る、私たちのDetAny3Dの強力な一般化を実証する実験結果である。
さらなる視覚化結果は、DetAny3Dプロジェクトページで見ることができる。
関連論文リスト
- V-MIND: Building Versatile Monocular Indoor 3D Detector with Diverse 2D Annotations [17.49394091283978]
V-MIND(Versatile Monocular Indoor Detector)は,室内3D検出器の性能を向上させる。
大規模2次元画像を3次元点雲に変換し,その後に擬似3次元境界ボックスを導出することにより,3次元学習データを生成する。
V-MINDはOmni3D屋内データセット上の幅広いクラスにわたる最先端のオブジェクト検出性能を実現する。
論文 参考訳(メタデータ) (2024-12-16T03:28:00Z) - ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDenseは既存の2Dネットワークと大規模マルチビューデータセットを利用した3D事前トレーニングのためのフレームワークである。
組込み型2Dと3Dの特徴をエンドツーエンドのパイプラインで抽出する新しい2D-3Dジョイントトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T05:57:01Z) - General Geometry-aware Weakly Supervised 3D Object Detection [62.26729317523975]
RGB画像と関連する2Dボックスから3Dオブジェクト検出器を学習するための統合フレームワークを開発した。
KITTIとSUN-RGBDデータセットの実験により,本手法は驚くほど高品質な3次元境界ボックスを2次元アノテーションで生成することを示した。
論文 参考訳(メタデータ) (2024-07-18T17:52:08Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
大規模に統一された3次元表現を探索する3次元基礎モデルであるUni3Dを提案する。
Uni3Dは、事前にトレーニングされた2D ViTのエンドツーエンドを使用して、3Dポイントクラウド機能と画像テキスト整列機能とを一致させる。
強力なUni3D表現は、野生での3D絵画や検索などの応用を可能にする。
論文 参考訳(メタデータ) (2023-10-10T16:49:21Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
既存の歩行認識の研究は、制約されたシーンにおける人間の体のシルエットや骨格のような2D表現によって支配されている。
本稿では,野生における歩行認識のための高密度な3次元表現の探索を目的とする。
大規模な3D表現に基づく歩行認識データセットGait3Dを構築した。
論文 参考訳(メタデータ) (2022-04-06T03:54:06Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
一般的な2D検出器をこの3Dタスクで動作させることは簡単ではない。
本報告では,完全畳み込み型単段検出器を用いた手法を用いてこの問題を考察する。
私たちのソリューションは、NeurIPS 2020のnuScenes 3D検出チャレンジのすべてのビジョンのみの方法の中で1位を獲得します。
論文 参考訳(メタデータ) (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Weakly Supervised 3D Object Detection from Point Clouds [27.70180601788613]
3Dオブジェクト検出は、特定のクラスに属するオブジェクトの3D境界ボックスを検出し、ローカライズすることを目的としている。
既存の3Dオブジェクト検出器は、トレーニング中にアノテーション付き3Dバウンディングボックスに依存している。
基礎となる真理3D境界ボックスを使わずに点雲からの3Dオブジェクト検出を弱教師付きで行うためのフレームワークであるVS3Dを提案する。
論文 参考訳(メタデータ) (2020-07-28T03:30:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。