Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
- URL: http://arxiv.org/abs/2504.07989v2
- Date: Tue, 22 Apr 2025 05:18:24 GMT
- Title: Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
- Authors: Nirvan Patil, Malhar Abhay Inamdar, Agnivo Gosai, Guruprasad Pathak, Anish Joshi, Aryan Sagavekar, Anish Joshirao, Raj Dandekar, Rajat Dandekar, Sreedath Panat,
- Abstract summary: We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity.<n>Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages.<n>These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
- Score: 1.1784026260358966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
Related papers
- Assessing Language Comprehension in Large Language Models Using Construction Grammar [3.0906699069248806]
Construction Grammar (CxG) provides insights into the meaning captured by linguistic elements known as constructions (Cxns)
These datasets are carefully constructed to include examples which are unlikely to appear in pre-training data, yet intuitive and easy for humans to understand.
Our experiments focus on downstream natural language inference and reasoning tasks by comparing LLMs' understanding of the underlying meanings communicated through 8 unique Cxns with that of humans.
arXiv Detail & Related papers (2025-01-08T18:15:10Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Adapting Multilingual LLMs to Low-Resource Languages with Knowledge Graphs via Adapters [3.7273829129985305]
This paper explores integration of graph knowledge from linguistic into multilingual Large Models (LLMs)<n>We employ language-specific adapters to improve performance for low-resource languages (LRLs) in sentiment analysis (SA) and named entity recognition (NER)<n>We assess how structured graph knowledge affects the performance of multilingual LLMs for LRLs in SA and NER.
arXiv Detail & Related papers (2024-07-01T15:56:24Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
Large Language Models (LLMs) are becoming crucial across various fields, emphasizing the urgency for high-quality models in underrepresented languages.
This study explores the unique challenges faced by low-resource languages, such as data scarcity, model selection, evaluation, and computational limitations.
arXiv Detail & Related papers (2024-05-07T21:58:45Z) - Machine Translation with Large Language Models: Prompt Engineering for
Persian, English, and Russian Directions [0.0]
Generative large language models (LLMs) have demonstrated exceptional proficiency in various natural language processing (NLP) tasks.
We conducted an investigation into two popular prompting methods and their combination, focusing on cross-language combinations of Persian, English, and Russian.
arXiv Detail & Related papers (2024-01-16T15:16:34Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Evaluating Neural Language Models as Cognitive Models of Language
Acquisition [4.779196219827507]
We argue that some of the most prominent benchmarks for evaluating the syntactic capacities of neural language models may not be sufficiently rigorous.
When trained on small-scale data modeling child language acquisition, the LMs can be readily matched by simple baseline models.
We conclude with suggestions for better connecting LMs with the empirical study of child language acquisition.
arXiv Detail & Related papers (2023-10-31T00:16:17Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.