Fusing Global and Local: Transformer-CNN Synergy for Next-Gen Current Estimation
- URL: http://arxiv.org/abs/2504.07996v1
- Date: Tue, 08 Apr 2025 19:42:10 GMT
- Title: Fusing Global and Local: Transformer-CNN Synergy for Next-Gen Current Estimation
- Authors: Junlang Huang, Hao Chen, Li Luo, Yong Cai, Lexin Zhang, Tianhao Ma, Yitian Zhang, Zhong Guan,
- Abstract summary: This paper presents a hybrid model combining Transformer and CNN for predicting the current waveform in signal lines.<n>It replaces the complex Newton iteration process used in traditional SPICE simulations, leveraging the powerful sequence modeling capabilities of the Transformer framework.<n> Experimental results demonstrate that, compared to traditional SPICE simulations, the proposed algorithm achieves an error of only 0.0098.
- Score: 4.945568106952893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a hybrid model combining Transformer and CNN for predicting the current waveform in signal lines. Unlike traditional approaches such as current source models, driver linear representations, waveform functional fitting, or equivalent load capacitance methods, our model does not rely on fixed simplified models of standard-cell drivers or RC loads. Instead, it replaces the complex Newton iteration process used in traditional SPICE simulations, leveraging the powerful sequence modeling capabilities of the Transformer framework to directly predict current responses without iterative solving steps. The hybrid architecture effectively integrates the global feature-capturing ability of Transformers with the local feature extraction advantages of CNNs, significantly improving the accuracy of current waveform predictions. Experimental results demonstrate that, compared to traditional SPICE simulations, the proposed algorithm achieves an error of only 0.0098. These results highlight the algorithm's superior capabilities in predicting signal line current waveforms, timing analysis, and power evaluation, making it suitable for a wide range of technology nodes, from 40nm to 3nm.
Related papers
- Gabor-Enhanced Physics-Informed Neural Networks for Fast Simulations of Acoustic Wavefields [2.8948274245812327]
Physics-Informed Neural Networks (PINNs) have gained increasing attention for solving partial differential equations.
We propose a simplified PINN framework that incorporates Gabor functions.
We demonstrate its superior accuracy, faster convergence, and better robustness features compared to both traditional PINNs and earlier Gabor-based PINNs.
arXiv Detail & Related papers (2025-02-24T13:25:40Z) - Implicit factorized transformer approach to fast prediction of turbulent channel flows [6.70175842351963]
We introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention.<n>The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow.
arXiv Detail & Related papers (2024-12-25T09:05:14Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Characteristic Learning for Provable One Step Generation [3.0457054308731215]
We propose a one-step generative model that combines the efficiency of sampling in Generative Adversarial Networks (GANs) with the stable performance of flow-based models.
Our model is driven by characteristics, along which the probability density transport can be described by ordinary differential equations (ODEs)
We analyze the errors in velocity matching, Euler discretization, and characteristic fitting to establish a non-asymptotic convergence rate for the characteristic generator in 2-Wasserstein distance.
arXiv Detail & Related papers (2024-05-09T02:41:42Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - DCTRGAN: Improving the Precision of Generative Models with Reweighting [1.2622634782102324]
We introduce a post-hoc correction to deep generative models to further improve their fidelity.
The correction takes the form of a reweighting function that can be applied to generated examples.
We show that the weighted GAN examples significantly improve the accuracy of the generated samples without a large loss in statistical power.
arXiv Detail & Related papers (2020-09-03T18:00:27Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.