論文の概要: Compositional Flows for 3D Molecule and Synthesis Pathway Co-design
- arxiv url: http://arxiv.org/abs/2504.08051v1
- Date: Thu, 10 Apr 2025 18:10:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:53.999493
- Title: Compositional Flows for 3D Molecule and Synthesis Pathway Co-design
- Title(参考訳): 3次元分子の組成流れと合成経路の共設計
- Authors: Tony Shen, Seonghwan Seo, Ross Irwin, Kieran Didi, Simon Olsson, Woo Youn Kim, Martin Ester,
- Abstract要約: コンポジション生成フロー(CGFlow)は、フローマッチングを拡張して、コンポジションステップでオブジェクトを生成する新しいフレームワークである。
生成フローネットワーク(GFlowNets)の理論的基盤を構築し,構成構造の報酬誘導サンプリングを可能にする。
CGFlowを合成可能な薬物設計に適用し、分子の合成経路と3D結合のポーズを共同で設計する。
- 参考スコア(独自算出の注目度): 3.7359205703290024
- License:
- Abstract: Many generative applications, such as synthesis-based 3D molecular design, involve constructing compositional objects with continuous features. Here, we introduce Compositional Generative Flows (CGFlow), a novel framework that extends flow matching to generate objects in compositional steps while modeling continuous states. Our key insight is that modeling compositional state transitions can be formulated as a straightforward extension of the flow matching interpolation process. We further build upon the theoretical foundations of generative flow networks (GFlowNets), enabling reward-guided sampling of compositional structures. We apply CGFlow to synthesizable drug design by jointly designing the molecule's synthetic pathway with its 3D binding pose. Our approach achieves state-of-the-art binding affinity on all 15 targets from the LIT-PCBA benchmark, and 5.8$\times$ improvement in sampling efficiency compared to 2D synthesis-based baseline. To our best knowledge, our method is also the first to achieve state of-art-performance in both Vina Dock (-9.38) and AiZynth success rate (62.2\%) on the CrossDocked benchmark.
- Abstract(参考訳): 合成に基づく3D分子設計のような多くの生成的応用は、連続的な特徴を持つ合成対象の構築を含む。
本稿では,連続状態をモデル化しながら,フローマッチングを拡張してコンポジションステップでオブジェクトを生成する新しいフレームワークであるCGFlowを紹介する。
我々の重要な洞察は、構成状態遷移のモデリングは、フローマッチング補間プロセスの直接的な拡張として定式化できるということである。
我々はさらに、生成フローネットワーク(GFlowNets)の理論基盤を構築し、合成構造の報酬誘導サンプリングを可能にする。
CGFlowを合成可能な薬物設計に適用し、分子の合成経路と3D結合のポーズを共同で設計する。
提案手法は,LIT-PCBAベンチマークから得られた15個のターゲットに対する最先端の結合親和性,および2次元合成ベースラインと比較してサンプリング効率を5.8$\times$改善する。
我々の知る限り、我々の手法は、CrossDockedベンチマーク上でVina Dock (-9.38)とAiZynth成功率 (62.2\%)の両方で、初めて最先端を実現する方法でもある。
関連論文リスト
- Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection [70.84835546732738]
RGB-Thermal Salient Object Detectionは、目視と熱赤外画像のペア内の目立つ物体をピンポイントすることを目的としている。
従来のエンコーダ・デコーダアーキテクチャは、欠陥モードから生じるノイズに対する頑健さを十分に考慮していなかったかもしれない。
本稿では,Divide-and-Conquer戦略を用いた,堅牢なConfluent Triple-Flow NetworkであるConTriNetを提案する。
論文 参考訳(メタデータ) (2024-12-02T14:44:39Z) - SemlaFlow -- Efficient 3D Molecular Generation with Latent Attention and Equivariant Flow Matching [43.56824843205882]
SemlaはスケーラブルなE(3)等価メッセージパッシングアーキテクチャである。
SemlaFlowは、原子タイプ、座標、結合タイプ、正式な電荷の結合分布を生成するために訓練されている。
本モデルでは,20段階のサンプリングを行ない,ベンチマークデータセットの最先端結果を生成する。
論文 参考訳(メタデータ) (2024-06-11T13:51:51Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
タンパク質構造生成のための新しいシーケンス条件付きフローマッチングモデルFoldFlow-2を紹介する。
我々は、以前の作業のPDBデータセットよりも桁違いに大きい新しいデータセットでFoldFlow-2を大規模にトレーニングします。
我々はFoldFlow-2が従来のタンパク質構造に基づく生成モデルよりも優れていることを実証的に観察した。
論文 参考訳(メタデータ) (2024-05-30T17:53:50Z) - SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints [16.21161274235011]
反応空間が化学反応と精製可能な反応物質を用いて新しい分子を逐次生成するGFlowNetモデルであるSynFlowNetを紹介する。
生成機構の明示的な制約としてフォワード合成を取り入れることで、シリコン分子生成と実世界の合成能力のギャップを埋めることを目指す。
論文 参考訳(メタデータ) (2024-05-02T10:15:59Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - SGTR+: End-to-end Scene Graph Generation with Transformer [42.396971149458324]
シーングラフ生成(SGG)は、その構成特性のため、困難な視覚的理解課題である。
これまでのほとんどの作業ではボトムアップ、2段階またはポイントベースの1段階のアプローチを採用していた。
本稿では、上記の問題に対処する新しいSGG法を提案し、そのタスクを二部グラフ構築問題として定式化する。
論文 参考訳(メタデータ) (2024-01-23T15:18:20Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
本稿では,長期的空間的および時間的依存関係に対処する新しいビデオ生成モデルを提案する。
提案手法は,3次元認識型生成フレームワークにインスパイアされた,明示的で単純化された3次元平面のハイブリッド表現を取り入れたものである。
我々のモデルは高精細度ビデオクリップを解像度256時間256$ピクセルで合成し、フレームレート30fpsで5ドル以上まで持続する。
論文 参考訳(メタデータ) (2024-01-11T16:48:44Z) - Harmonic Self-Conditioned Flow Matching for Multi-Ligand Docking and Binding Site Design [29.972698307121675]
FlowSiteはこのフローモデルを拡張して、タンパク質ポケットの離散残基タイプと分子の結合3D構造を共同で生成する。
HarmonicFlowは, ドッキングの簡易性, 汎用性, 平均試料品質の向上を図っている。
論文 参考訳(メタデータ) (2023-10-09T14:45:33Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
我々はFoldFlowを紹介した。FoldFlowは,3mathrmD$の剛性運動に対するフローマッチングパラダイムに基づく,モデリング能力向上のための新しい生成モデルである。
FoldFlow生成モデルのファミリーは、タンパク質の生成モデルに対する従来のアプローチよりもいくつかの利点を提供している。
論文 参考訳(メタデータ) (2023-10-03T19:24:24Z) - AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation [80.33846577924363]
ビデオフレームギスブのための新しいネットワークアーキテクチャであるAMT(All-Pairs Multi-Field Transforms)を提案する。
まず、すべての画素に対して双方向のボリュームを構築し、予測された両側フローを用いて相関関係を検索する。
第2に、入力フレーム上で逆向きのワープを行うために、一対の更新された粗い流れから細粒度の流れ場の複数のグループを導出する。
論文 参考訳(メタデータ) (2023-04-19T16:18:47Z) - Hybrid Graph Models for Logic Optimization via Spatio-Temporal
Information [15.850413267830522]
EDAにおけるプロダクション対応MLアプリケーションを妨げるおもな懸念点は、正確性要件と一般化能力である。
本稿では,高精度なQoR推定に対するハイブリッドグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
3.3百万のデータポイントの評価によると、トレーニング中に見つからないデザインの絶対パーセンテージエラー(MAPE)は1.2%と3.1%に満たない。
論文 参考訳(メタデータ) (2022-01-20T21:12:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。