論文の概要: DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design
- arxiv url: http://arxiv.org/abs/2403.07902v1
- Date: Mon, 26 Feb 2024 05:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:00:28.654600
- Title: DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design
- Title(参考訳): DecompDiff: 構造に基づく医薬品設計に先立つ拡散モデル
- Authors: Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang, Quanquan Gu,
- Abstract要約: 既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
- 参考スコア(独自算出の注目度): 62.68420322996345
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Designing 3D ligands within a target binding site is a fundamental task in drug discovery. Existing structured-based drug design methods treat all ligand atoms equally, which ignores different roles of atoms in the ligand for drug design and can be less efficient for exploring the large drug-like molecule space. In this paper, inspired by the convention in pharmaceutical practice, we decompose the ligand molecule into two parts, namely arms and scaffold, and propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold. In order to facilitate the decomposed generation and improve the properties of the generated molecules, we incorporate both bond diffusion in the model and additional validity guidance in the sampling phase. Extensive experiments on CrossDocked2020 show that our approach achieves state-of-the-art performance in generating high-affinity molecules while maintaining proper molecular properties and conformational stability, with up to -8.39 Avg. Vina Dock score and 24.5 Success Rate. The code is provided at https://github.com/bytedance/DecompDiff
- Abstract(参考訳): 標的結合部位内で3Dリガンドを設計することは、薬物発見の基本的な課題である。
既存の構造化された薬物設計法は、全ての配位子原子を等しく扱い、薬物設計のために配位子内の原子の役割が異なることを無視し、大きな薬物のような分子空間を探索するのに効率が良くない。
本稿では、医薬の慣行に触発されて、リガンド分子を2つの部分、すなわち腕と足場に分解し、腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
生成した分子の分解を容易にし, 特性を向上させるために, モデルに結合拡散とサンプリングフェーズに付加的な妥当性ガイダンスを組み込んだ。
また,CrossDocked2020における広範囲な実験により,高親和性分子の生成において高い分子特性と配座安定性を維持しつつ,最大8.39Avgの高親和性分子を生成できることが示唆された。
ヴィナ・ドックの得点と24.5回の成功率。
コードはhttps://github.com/bytedance/DecompDiffで提供されている。
関連論文リスト
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3次元生成モデルは、構造ベースドラッグデザイン(SBDD)において大きな可能性を秘めている。
問題を分子生成と特性予測に分離する。
後者は相乗的に拡散サンプリング過程を導出し、誘導拡散を促進し、所望の性質を持つ有意義な分子を創出する。
この誘導分子生成過程をTAGMolと呼ぶ。
論文 参考訳(メタデータ) (2024-06-03T14:43:54Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
本稿では,分子を望ましい性質で生成する新しい手法を提案する。
望ましい分子断片を得るため,我々は新しい電子効果に基づくフラグメンテーション法を開発した。
提案手法により生成する分子は, 従来のSOTAモデルより有効, 特異性, 新規性, Fr'echet ChemNet Distance (FCD), QED, PlogP を有することを示す。
論文 参考訳(メタデータ) (2023-10-05T11:43:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - Structure-aware generation of drug-like molecules [2.449909275410288]
深部生成法は、新しい分子をスクラッチから提案する(デノボ設計)。
本稿では, 分子間空間における3次元ポーズと協調して分子グラフを生成する新しい教師付きモデルを提案する。
ドッキングベンチマークを用いて,ドッキングモデルの評価を行い,ドッキング生成によって予測される結合親和性が8%向上し,薬物類似度が10%向上することが確認された。
論文 参考訳(メタデータ) (2021-11-07T15:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。