論文の概要: Multi-person Physics-based Pose Estimation for Combat Sports
- arxiv url: http://arxiv.org/abs/2504.08175v1
- Date: Fri, 11 Apr 2025 00:08:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:18:58.363877
- Title: Multi-person Physics-based Pose Estimation for Combat Sports
- Title(参考訳): マルチパーソン物理に基づくコンバットスポーツのポース推定
- Authors: Hossein Feiz, David Labbé, Thomas Romeas, Jocelyn Faubert, Sheldon Andrews,
- Abstract要約: スパースマルチカメラを用いた戦闘スポーツにおける正確な3次元ポーズ推定のための新しい枠組みを提案する。
提案手法は,トランスフォーマーを用いたトップダウン手法により,堅牢なマルチビュー2Dポーズトラッキングを実現する。
我々はさらに、多対人物理に基づく軌道最適化のステップを導入することにより、ポーズリアリズムとロバスト性をさらに強化する。
- 参考スコア(独自算出の注目度): 0.689728655482787
- License:
- Abstract: We propose a novel framework for accurate 3D human pose estimation in combat sports using sparse multi-camera setups. Our method integrates robust multi-view 2D pose tracking via a transformer-based top-down approach, employing epipolar geometry constraints and long-term video object segmentation for consistent identity tracking across views. Initial 3D poses are obtained through weighted triangulation and spline smoothing, followed by kinematic optimization to refine pose accuracy. We further enhance pose realism and robustness by introducing a multi-person physics-based trajectory optimization step, effectively addressing challenges such as rapid motions, occlusions, and close interactions. Experimental results on diverse datasets, including a new benchmark of elite boxing footage, demonstrate state-of-the-art performance. Additionally, we release comprehensive annotated video datasets to advance future research in multi-person pose estimation for combat sports.
- Abstract(参考訳): スパースマルチカメラを用いた戦闘スポーツにおける正確な3次元ポーズ推定のための新しい枠組みを提案する。
提案手法は,マルチビュー2次元ポーズトラッキングをトランスフォーマーベースのトップダウンアプローチで実現し,視点を横断する一貫したアイデンティティトラッキングのために,エピポーラ幾何制約と長期ビデオオブジェクトセグメンテーションを利用する。
初期3次元ポーズは、重み付けされた三角法とスプライン平滑化により得られる。
我々はさらに、素早い動き、閉塞、密接な相互作用といった課題に効果的に取り組むために、多人数の物理に基づく軌道最適化ステップを導入することで、ポーズリアリズムとロバスト性をさらに強化する。
新しいエリートボクシング映像のベンチマークを含む多様なデータセットの実験結果は、最先端のパフォーマンスを示している。
さらに,戦闘スポーツの多人数ポーズ推定における今後の研究を進めるために,包括的アノテーション付きビデオデータセットをリリースする。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - MultiPhys: Multi-Person Physics-aware 3D Motion Estimation [28.91813849219037]
モノクロビデオから多人数動作を復元する手法であるMultiPhysを紹介する。
私たちの焦点は、様々なエンゲージメントの度合いで、ペアの個人間のコヒーレントな空間配置をキャプチャすることにあります。
本研究では,運動量に基づく運動を物理シミュレーターに自動回帰的に供給するパイプラインを考案する。
論文 参考訳(メタデータ) (2024-04-18T08:29:29Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
静止カメラで記録された1枚のRGBビデオから、シーン内の複数の人間の3次元位置を推定し、その身体形状と調音を推定する問題を考察する。
コンピュータビジョンの最近の進歩を,2次元の人体関節,関節角度,正規化不均等マップ,人間のセグメンテーションマスクなど,様々なモダリティのための大規模事前訓練モデルを用いて活用している。
特に,2次元の関節と関節角度を用いた正規化不均等予測から,シーン深度とユニークな人格尺度を推定する。
論文 参考訳(メタデータ) (2023-01-12T18:01:28Z) - Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D
Pose Estimation Tracking and Forecasting on a Video Snippet [24.852728097115744]
RGBからの多人数ポーズ理解には、ポーズ推定、トラッキング、動き予測という3つの複雑なタスクが含まれる。
既存の作業の多くは、ひとつのタスクに集中するか、複数のタスクを別々に解決するためのマルチステージアプローチを採用するかのどちらかです。
Snipperは、複数の人物によるポーズ推定、追跡、動き予測を同時に行うための統合されたフレームワークである。
論文 参考訳(メタデータ) (2022-07-09T18:42:14Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
本研究では,映像から3次元の運動,3次元の形状,および高度に動きやすい物体の外観を同時推定する手法を提案する。
提案手法は, 高速移動物体の劣化と3次元再構成において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-29T11:25:14Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Multi-Scale Networks for 3D Human Pose Estimation with Inference Stage
Optimization [33.02708860641971]
モノクロビデオから3Dのポーズを推定することは、まだまだ難しい課題だ。
既存の多くのメソッドは、対象の人が他のオブジェクトに干渉されたり、トレーニングデータのスケールや速度に対して動きが速すぎたり、遅くなったりすると低下する。
頑健な3次元ポーズ推定のための時間的ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-13T15:24:28Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z) - Synergetic Reconstruction from 2D Pose and 3D Motion for Wide-Space
Multi-Person Video Motion Capture in the Wild [3.0015034534260665]
マルチカメラの精度と滑らかさを考慮したマーカーレスモーションキャプチャ手法を提案する。
提案手法は,各人物の3Dポーズを予測し,マルチカメラ画像のバウンディングボックスを決定する。
提案手法を,様々なデータセットと実スポーツフィールドを用いて評価した。
論文 参考訳(メタデータ) (2020-01-16T02:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。