The Vacua of Dipolar Cavity Quantum Electrodynamics
- URL: http://arxiv.org/abs/2004.13738v4
- Date: Mon, 15 Mar 2021 07:58:54 GMT
- Title: The Vacua of Dipolar Cavity Quantum Electrodynamics
- Authors: Michael Schuler, Daniele De Bernardis, Andreas M. L\"auchli, and Peter
Rabl
- Abstract summary: We show how strong and long-range vacuum fluctuations modify the states of dipolar matter and induce novel phases with unusual properties.
These general mechanisms can be important for potential applications, ranging from cavity-assisted chemistry to quantum technologies based on ultrastrongly coupled circuit QED systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The structure of solids and their phases is mainly determined by static
Coulomb forces while the coupling of charges to the dynamical, i.e., quantized
degrees of freedom of the electromagnetic field plays only a secondary role.
Recently, it has been speculated that this general rule can be overcome in the
context of cavity quantum electrodynamics (QED), where the coupling of dipoles
to a single field mode can be dramatically enhanced. Here we present a first
exact analysis of the ground states of a dipolar cavity QED system in the
non-perturbative coupling regime, where electrostatic and dynamical
interactions play an equally important role. Specifically, we show how strong
and long-range vacuum fluctuations modify the states of dipolar matter and
induce novel phases with unusual properties. Beyond a purely fundamental
interest, these general mechanisms can be important for potential applications,
ranging from cavity-assisted chemistry to quantum technologies based on
ultrastrongly coupled circuit QED systems.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Atom-Field-Medium Interactions I: Graded Influence Actions for $N$ Harmonic Atoms in a Dielectric-Altered Quantum Field [0.0]
We develop the graded influence action formalism citeBehHu10,BH11 to account for the influences of successive sub-layers on the dynamics of the variables of interest.
arXiv Detail & Related papers (2024-08-07T06:33:27Z) - Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons [0.0]
We study the dynamics of a $nu=1/3$ Laughlin state in a single-mode cavity with finite electric field gradients.
We find that the topological signatures of the FQH state remain robust against the non-local modulated cavity vacuum fluctuations.
By exploring the low-energy excited spectrum inside the FQH phase, we identify a new neutral quasiparticle, the graviton-polariton.
arXiv Detail & Related papers (2024-05-20T18:00:36Z) - Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Local Fluctuations in Cavity Control of Ferroelectricity [0.0]
We study a quantum paraelectric sandwiched between two high-quality metal mirrors.
We find that once a continuum of transverse modes are included the cavity ends up suppressing ferroelectric correlations.
Our results are based on a general formalism and are expected to be widely applicable.
arXiv Detail & Related papers (2023-01-05T02:55:52Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Thermodynamics of ultrastrongly coupled light-matter systems [0.0]
We study the thermodynamic properties of a system of two-level dipoles that are coupled ultrastrongly to a single cavity mode.
We identify the lowest-order cavity-induced corrections to those quantities in the collective ultrastrong coupling regime.
For even stronger interactions the presence of a single cavity mode can strongly modify extensive thermodynamic quantities.
arXiv Detail & Related papers (2020-03-25T18:00:07Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.