Nonadiabatic Field with Triangle Window Functions on Quantum Phase Space
- URL: http://arxiv.org/abs/2404.05432v2
- Date: Sat, 18 May 2024 10:20:24 GMT
- Title: Nonadiabatic Field with Triangle Window Functions on Quantum Phase Space
- Authors: Xin He, Xiangsong Cheng, Baihua Wu, Jian Liu,
- Abstract summary: We use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel useful representation of discrete electronic degrees of freedom (DOFs)
In comparison to the symmetrical quasi-classical (SQC) method, the performance of NaF-TW is significantly better when the bifurcation characteristic of nuclear motion in the region is important.
- Score: 18.154295245944827
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The constraint coordinate-momentum phase space (CPS) formulation of finite-state quantum systems has recently revealed that the triangle window function approach is an isomorphic representation of the exact population-population correlation function of the two-state system. We use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel useful representation of discrete electronic degrees of freedom (DOFs). When it is employed with nonadiabatic field (NaF) dynamics, a new variant of the NaF approach (i.e., NaF-TW) is proposed. Extensive benchmark tests of model systems in both the condensed phase and gas phase demonstrate that the NaF-TW approach is competent in faithfully capturing the dynamical interplay between electronic and nuclear DOFs. In comparison to the symmetrical quasi-classical (SQC) method where triangle window functions were originally proposed, the performance of NaF-TW is significantly better when the bifurcation characteristic of nuclear motion in the asymptotic region is important.
Related papers
- Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics [16.057546210555632]
Nonadiabatic field (NaF) is a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories.
NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime.
It will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
arXiv Detail & Related papers (2025-04-11T04:22:12Z) - Geometric Neural Process Fields [58.77241763774756]
Geometric Neural Process Fields (G-NPF) is a probabilistic framework for neural radiance fields that explicitly captures uncertainty.
Building on these bases, we design a hierarchical latent variable model, allowing G-NPF to integrate structural information across multiple spatial levels.
Experiments on novel-view synthesis for 3D scenes, as well as 2D image and 1D signal regression, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2025-02-04T14:17:18Z) - Superradiant phase transitions in the quantum Rabi model: Overcoming the no-go theorem through anisotropy [30.342686040430962]
Superradiant phase transition (SRPT) is prohibited in the paradigmatic quantum Rabi model.
We show two distinct types of SRPTs emerging from the normal phase in the anisotropic quantum Rabi model.
arXiv Detail & Related papers (2024-12-11T11:33:29Z) - State-Free Inference of State-Space Models: The Transfer Function Approach [132.83348321603205]
State-free inference does not incur any significant memory or computational cost with an increase in state size.
We achieve this using properties of the proposed frequency domain transfer function parametrization.
We report improved perplexity in language modeling over a long convolutional Hyena baseline.
arXiv Detail & Related papers (2024-05-10T00:06:02Z) - Nonadiabatic Field on Quantum Phase Space: A Century after Ehrenfest [19.83226336051656]
Nonadiabatic field (NaF) is based on a generalized exact coordinate-momentum phase space formulation of quantum mechanics.
A few benchmark tests for gas phase and condensed phase systems indicate that NaF offers a practical tool to capture the correct correlation of electronic and nuclear dynamics.
arXiv Detail & Related papers (2024-04-07T08:19:47Z) - Pairing from repulsion in a two-dimensional Fermi gas with soft-core interactions [3.4186533395054566]
We investigate a model many-body system of Fermi gas in two dimensions, where the bare two-body interaction is repulsive and takes the form of a soft-core disk potential.
We obtain the zero temperature phase diagram of this model by numerical functional renormalization group (FRG)
We trace the stabilization and enhancement of $f$- and $h$-wave pairing back to the momentum dependence of the bare interaction.
arXiv Detail & Related papers (2023-09-29T16:08:45Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
Networks on Homogeneous Spaces [52.424621227687894]
We introduce a unified framework for group equivariant networks on homogeneous spaces.
We take advantage of the sparsity of Fourier coefficients of the lifted feature fields.
We show that other methods treating features as the Fourier coefficients in the stabilizer subgroup are special cases of our activation.
arXiv Detail & Related papers (2022-06-16T17:59:01Z) - Structural aspects of FRG in quantum tunnelling computations [68.8204255655161]
We probe both the unidimensional quartic harmonic oscillator and the double well potential.
Two partial differential equations for the potential V_k(varphi) and the wave function renormalization Z_k(varphi) are studied.
arXiv Detail & Related papers (2022-06-14T15:23:25Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Constructing tensor network wavefunction for a generic two-dimensional
quantum phase transition via thermofield double states [2.416375474510521]
Two-dimensional quantum Rokhsar-Kivelson (RK) type models can be mapped into the partition functions of two-dimensional statistical models.
We introduce the universality of the thermofield double (TFD) state, which is a purification of the equilibrium density operator.
By expressing the TFD state in terms of the projected entangled pair state, its $N$-order of R'enyi entropy results in a three-dimensional statistical model in Euclidian spacetime.
arXiv Detail & Related papers (2020-12-28T09:05:55Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Non-Hermitian effects of the intrinsic signs in topologically ordered
wavefunctions [12.453831188907797]
Ground-state wavefunction of double semion model on a two-dimensional hexagonal lattice contains an intrinsic sign.
A connection has established between the intrinsic signs in the topologically ordered wavefunction and the PT-symmetric non-Hermitian statistical model.
arXiv Detail & Related papers (2020-05-08T03:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.