論文の概要: PMNI: Pose-free Multi-view Normal Integration for Reflective and Textureless Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2504.08410v1
- Date: Fri, 11 Apr 2025 10:16:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:18:50.109156
- Title: PMNI: Pose-free Multi-view Normal Integration for Reflective and Textureless Surface Reconstruction
- Title(参考訳): PMNI : 反射・集合性表面再構成のための多面的多視点正規化
- Authors: Mingzhi Pei, Xu Cao, Xiangyi Wang, Heng Guo, Zhanyu Ma,
- Abstract要約: 本稿では,RGB画像の代わりに表面正規写像を活用することにより,リッチな幾何学的情報を取り入れたニューラルサーフェス再構成手法PMNIを提案する。
提案手法は, 反射面の復元において, 信頼性の高い初期カメラのポーズを伴わずに, 最先端の性能を実現することを示す。
- 参考スコア(独自算出の注目度): 20.667434274495957
- License:
- Abstract: Reflective and textureless surfaces remain a challenge in multi-view 3D reconstruction.Both camera pose calibration and shape reconstruction often fail due to insufficient or unreliable cross-view visual features. To address these issues, we present PMNI (Pose-free Multi-view Normal Integration), a neural surface reconstruction method that incorporates rich geometric information by leveraging surface normal maps instead of RGB images. By enforcing geometric constraints from surface normals and multi-view shape consistency within a neural signed distance function (SDF) optimization framework, PMNI simultaneously recovers accurate camera poses and high-fidelity surface geometry. Experimental results on synthetic and real-world datasets show that our method achieves state-of-the-art performance in the reconstruction of reflective surfaces, even without reliable initial camera poses.
- Abstract(参考訳): 反射面とテクスチャレス面は多面的3次元再構成の課題であり,両カメラともキャリブレーションや形状復元は不十分あるいは信頼性の低い視覚的特徴のために失敗することが多い。
これらの問題に対処するために,RGB画像の代わりに表面正規写像を活用することにより,リッチな幾何学的情報を組み込んだPMNI(Pose-free Multi-view Normal Integration)を提案する。
ニューラルサイン付き距離関数 (SDF) 最適化フレームワークにおいて, 表面の正規性や多視点形状の整合性から幾何的制約を課すことにより, PMNI は高精度なカメラポーズと高忠実度表面形状を同時に復元する。
合成, 実世界のデータセットを用いた実験結果から, 信頼性の高い初期カメラのポーズを伴わずとも, 反射面の再構成における最先端性能を実現することができた。
関連論文リスト
- NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSPはスパース偏光画像を用いた反射面のニューラル3次元再構成技術である。
偏光画像形成モデルと多視点方位整合性から測光的および幾何学的手がかりを導出する。
我々は6つのビューのみを入力として、最先端の表面再構成結果を達成する。
論文 参考訳(メタデータ) (2024-06-11T09:53:18Z) - NoPose-NeuS: Jointly Optimizing Camera Poses with Neural Implicit
Surfaces for Multi-view Reconstruction [0.0]
NoPose-NeuSは、NeuSを拡張して、幾何学とカラーネットワークでカメラポーズを協調的に最適化する、ニューラルネットワークによる暗黙の表面再構成手法である。
提案手法は, 比較的正確なカメラポーズを推定できるが, 表面改質品質は0.89で, チャムファー距離は0.89である。
論文 参考訳(メタデータ) (2023-12-23T12:18:22Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections [87.191742674543]
大規模な複雑なシーンをリフレクションで再構成できる汎用3次元再構成手法UniSDFを提案する。
提案手法は,複雑な大規模シーンを細部と反射面で頑健に再構築し,全体的な性能を向上する。
論文 参考訳(メタデータ) (2023-12-20T18:59:42Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
微分可能レンダリング(DR)に基づく3次元オブジェクト再構成はコンピュータビジョンにおいて活発な研究課題である。
DRに基づく多視点3Dオブジェクト再構成において,構造化光(SL)を用いたアクティブセンシングを導入し,任意のシーンやカメラポーズの未知の形状と外観を学習する。
本手法は, テクスチャレス領域における高い再現精度を実現し, カメラポーズキャリブレーションの労力を削減する。
論文 参考訳(メタデータ) (2022-11-22T03:10:46Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
本稿では、カメラのポーズ、照明、アルベド、表面の正規化に取り組み、新しい多視点RGB-Dベースの再構成手法を提案する。
提案手法は,特定の物理モデルを用いて画像描画過程を定式化し,実際の表面の体積量を最適化する。
論文 参考訳(メタデータ) (2022-10-21T19:09:08Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDERは、教師なしの方法で単一の画像から詳細な顔形状を復元する新しい光度最適化手法である。
以前の作業とは対照的に、SIDERはデータセットの事前に依存せず、複数のビュー、照明変更、地上の真実の3D形状から追加の監視を必要としない。
論文 参考訳(メタデータ) (2021-08-11T22:34:53Z) - Multi-view 3D Reconstruction of a Texture-less Smooth Surface of Unknown
Generic Reflectance [86.05191217004415]
表面反射率の不明なテクスチャレス物体の多視点再構成は難しい課題である。
本稿では,コライトスキャナーをベースとした,この問題に対するシンプルで堅牢な解法を提案する。
論文 参考訳(メタデータ) (2021-05-25T01:28:54Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。