Explainability and Continual Learning meet Federated Learning at the Network Edge
- URL: http://arxiv.org/abs/2504.08536v1
- Date: Fri, 11 Apr 2025 13:45:55 GMT
- Title: Explainability and Continual Learning meet Federated Learning at the Network Edge
- Authors: Thomas Tsouparopoulos, Iordanis Koutsopoulos,
- Abstract summary: We discuss novel optimization problems that emerge in distributed learning at the network edge with wirelessly interconnected edge devices.<n>Specifically, we discuss how Multi-objective optimization (MOO) can be used to address the trade-off between predictive accuracy and explainability.<n>We also discuss the implications of integrating inherently explainable tree-based models into distributed learning settings.
- Score: 4.348225679878919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As edge devices become more capable and pervasive in wireless networks, there is growing interest in leveraging their collective compute power for distributed learning. However, optimizing learning at the network edge entails unique challenges, particularly when moving beyond conventional settings and objectives. While Federated Learning (FL) has emerged as a key paradigm for distributed model training, critical challenges persist. First, existing approaches often overlook the trade-off between predictive accuracy and interpretability. Second, they struggle to integrate inherently explainable models such as decision trees because their non-differentiable structure makes them not amenable to backpropagation-based training algorithms. Lastly, they lack meaningful mechanisms for continual Machine Learning (ML) model adaptation through Continual Learning (CL) in resource-limited environments. In this paper, we pave the way for a set of novel optimization problems that emerge in distributed learning at the network edge with wirelessly interconnected edge devices, and we identify key challenges and future directions. Specifically, we discuss how Multi-objective optimization (MOO) can be used to address the trade-off between predictive accuracy and explainability when using complex predictive models. Next, we discuss the implications of integrating inherently explainable tree-based models into distributed learning settings. Finally, we investigate how CL strategies can be effectively combined with FL to support adaptive, lifelong learning when limited-size buffers are used to store past data for retraining. Our approach offers a cohesive set of tools for designing privacy-preserving, adaptive, and trustworthy ML solutions tailored to the demands of edge computing and intelligent services.
Related papers
- Make Haste Slowly: A Theory of Emergent Structured Mixed Selectivity in Feature Learning ReLU Networks [16.83151955540625]
We take a step towards a theory of feature learning in finite ReLU networks.<n>We show how structured mixed-selective latent representations can emerge due to a bias for node-reuse and learning speed.
arXiv Detail & Related papers (2025-03-08T11:47:33Z) - On-device edge learning for IoT data streams: a survey [1.7186863539230333]
This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs)<n>We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge)<n>The survey details the challenges of deploying deep learners on resource-constrained edge devices.
arXiv Detail & Related papers (2025-02-25T02:41:23Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation.
By modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity.
We show that FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble of networks.
arXiv Detail & Related papers (2022-05-31T18:33:15Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.