Boosting-inspired online learning with transfer for railway maintenance
- URL: http://arxiv.org/abs/2504.08554v1
- Date: Fri, 11 Apr 2025 14:03:31 GMT
- Title: Boosting-inspired online learning with transfer for railway maintenance
- Authors: Diogo Risca, Afonso Lourenço, Goreti Marreiros,
- Abstract summary: This paper introduces BOLT-RM (Boosting-inspired Online Learning with Transfer for Railway Maintenance), a model designed to address these challenges using continual learning for predictive maintenance.<n>It retains past knowledge while improving predictive accuracy with each new learning episode, using a boosting-like knowledge sharing mechanism.<n>The proposed BOLT-RM model demonstrates significant improvements in identifying wheel anomalies, establishing a reliable sequence for maintenance interventions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of advanced sensor technologies with deep learning algorithms has revolutionized fault diagnosis in railway systems, particularly at the wheel-track interface. Although numerous models have been proposed to detect irregularities such as wheel out-of-roundness, they often fall short in real-world applications due to the dynamic and nonstationary nature of railway operations. This paper introduces BOLT-RM (Boosting-inspired Online Learning with Transfer for Railway Maintenance), a model designed to address these challenges using continual learning for predictive maintenance. By allowing the model to continuously learn and adapt as new data become available, BOLT-RM overcomes the issue of catastrophic forgetting that often plagues traditional models. It retains past knowledge while improving predictive accuracy with each new learning episode, using a boosting-like knowledge sharing mechanism to adapt to evolving operational conditions such as changes in speed, load, and track irregularities. The methodology is validated through comprehensive multi-domain simulations of train-track dynamic interactions, which capture realistic railway operating conditions. The proposed BOLT-RM model demonstrates significant improvements in identifying wheel anomalies, establishing a reliable sequence for maintenance interventions.
Related papers
- AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.
Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.
We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - Disentangled World Models: Learning to Transfer Semantic Knowledge from Distracting Videos for Reinforcement Learning [93.58897637077001]
This paper tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints.<n>We pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos.<n>For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model.
arXiv Detail & Related papers (2025-03-11T13:50:22Z) - Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport [1.6678419461030687]
Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning.<n>Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced dynamics from observed snapshots.<n>Based on the RUOT form, our method models these dynamics without requiring prior knowledge of growth and death processes or additional information.
arXiv Detail & Related papers (2024-10-01T16:25:03Z) - Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.<n>During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.<n>We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
Adapting to concept drift is a challenging task in machine learning.
In communication networks, such issue emerges when performing traffic forecasting following afailure event.
We propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining.
arXiv Detail & Related papers (2024-04-08T08:47:46Z) - Finetuning Offline World Models in the Real World [13.46766121896684]
Reinforcement Learning (RL) is notoriously data-inefficient, which makes training on a real robot difficult.
offline RL has been proposed as a framework for training RL policies on pre-existing datasets without any online interaction.
In this work, we consider the problem of pretraining a world model with offline data collected on a real robot, and then finetuning the model on online data collected by planning with the learned model.
arXiv Detail & Related papers (2023-10-24T17:46:12Z) - DTC: Deep Tracking Control [16.2850135844455]
We propose a hybrid control architecture that combines the advantages of both worlds to achieve greater robustness, foot-placement accuracy, and terrain generalization.
A deep neural network policy is trained in simulation, aiming to track the optimized footholds.
We demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts.
arXiv Detail & Related papers (2023-09-27T07:57:37Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z) - Learn to Predict Vertical Track Irregularity with Extremely Imbalanced
Data [6.448383767373112]
We showcase an application framework for predicting vertical track irregularity, based on a real-world, large-scale dataset produced by several operating railways in China.
We also proposed a novel approach for handling imbalanced data in time series prediction tasks with adaptive data sampling and penalized loss.
arXiv Detail & Related papers (2020-12-05T15:49:39Z) - Online Constrained Model-based Reinforcement Learning [13.362455603441552]
Key requirement is the ability to handle continuous state and action spaces while remaining within a limited time and resource budget.
We propose a model based approach that combines Gaussian Process regression and Receding Horizon Control.
We test our approach on a cart pole swing-up environment and demonstrate the benefits of online learning on an autonomous racing task.
arXiv Detail & Related papers (2020-04-07T15:51:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.