Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport
- URL: http://arxiv.org/abs/2410.00844v3
- Date: Wed, 19 Feb 2025 05:52:56 GMT
- Title: Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport
- Authors: Zhenyi Zhang, Tiejun Li, Peijie Zhou,
- Abstract summary: Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning.<n>Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced dynamics from observed snapshots.<n>Based on the RUOT form, our method models these dynamics without requiring prior knowledge of growth and death processes or additional information.
- Score: 1.6678419461030687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning. Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced stochastic dynamics from observed snapshots. Based on the RUOT form, our method models these dynamics without requiring prior knowledge of growth and death processes or additional information, allowing them to be learned directly from data. Theoretically, we explore the connections between the RUOT and Schr\"odinger bridge problem and discuss the key challenges and potential solutions. The effectiveness of our method is demonstrated with a synthetic gene regulatory network, high-dimensional Gaussian Mixture Model, and single-cell RNA-seq data from blood development. Compared with other methods, our approach accurately identifies growth and transition patterns, eliminates false transitions, and constructs the Waddington developmental landscape. Our code is available at: https://github.com/zhenyiizhang/DeepRUOT.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations [0.0]
Variational Autoencoders (VAEs) are a powerful framework for learning latent representations of reduced dimensionality.
Neural ODEs excel in learning transient system dynamics.
We show that standard Latent ODEs struggle with dimensionality reduction in systems with time-varying inputs.
arXiv Detail & Related papers (2024-10-14T05:45:52Z) - Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes [24.723536390322582]
tensor decomposition is an important tool for multiway data analysis.
We propose Dynamic EMbedIngs fOr dynamic algorithm dEcomposition (DEMOTE)
We show the advantage of our approach in both simulation study and real-world applications.
arXiv Detail & Related papers (2023-10-30T15:49:45Z) - Amortized Network Intervention to Steer the Excitatory Point Processes [8.15558505134853]
Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
arXiv Detail & Related papers (2023-10-06T11:17:28Z) - Sequential Neural Barriers for Scalable Dynamic Obstacle Avoidance [7.375976854181687]
We propose a novel method for compositional learning of Sequential Neural Control Barrier models (SNCBFs)
Our approach exploits an important observation: the spatial interaction patterns of multiple dynamic obstacles can be decomposed and predicted through temporal sequences of states for each obstacle.
We demonstrate the benefits of the proposed methods in improving dynamic collision avoidance in comparison with existing methods.
arXiv Detail & Related papers (2023-07-06T14:24:17Z) - A Model-Constrained Tangent Manifold Learning Approach for Dynamical
Systems [0.0]
Real time accurate solutions of large scale complex dynamical systems are in critical need for control, optimization, uncertainty, and decision-making.
This paper contributes in this direction a model constrained tangent manifold learning (mcTangent) approach.
arXiv Detail & Related papers (2022-08-09T18:42:03Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Discovering dynamical features of Hodgkin-Huxley-type model of
physiological neuron using artificial neural network [0.0]
We consider Hodgkin-Huxley-type system with two fast and one slow variables.
For these two systems we create artificial neural networks that are able to reproduce their dynamics.
For the bistable model it means that the network being trained only on one brunch of the solutions recovers another without seeing it during the training.
arXiv Detail & Related papers (2022-03-26T19:04:19Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
We propose a self-supervised solution to the problem of learning to model how the world changes as time elapses.
Our model learns modality-agnostic functions to predict forward and backward in time, which must undo each other when composed.
We apply the learned dynamics model without further training to various tasks, such as predicting future action and temporally ordering sets of images.
arXiv Detail & Related papers (2021-01-07T02:41:32Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Planning from Images with Deep Latent Gaussian Process Dynamics [2.924868086534434]
Planning is a powerful approach to control problems with known environment dynamics.
In unknown environments the agent needs to learn a model of the system dynamics to make planning applicable.
We propose to learn a deep latent Gaussian process dynamics (DLGPD) model that learns low-dimensional system dynamics from environment interactions with visual observations.
arXiv Detail & Related papers (2020-05-07T21:29:45Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z) - How to train your neural ODE: the world of Jacobian and kinetic
regularization [7.83405844354125]
Training neural ODEs on large datasets has not been tractable due to the necessity of allowing the adaptive numerical ODE solver to refine its step size to very small values.
We introduce a theoretically-grounded combination of both optimal transport and stability regularizations which encourage neural ODEs to prefer simpler dynamics out of all the dynamics that solve a problem well.
arXiv Detail & Related papers (2020-02-07T14:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.