Neuromorphic Face Analysis: a Survey
- URL: http://arxiv.org/abs/2402.11631v2
- Date: Mon, 22 Apr 2024 16:18:38 GMT
- Title: Neuromorphic Face Analysis: a Survey
- Authors: Federico Becattini, Lorenzo Berlincioni, Luca Cultrera, Alberto Del Bimbo,
- Abstract summary: Neuromorphic sensors, also known as event cameras, are a class of imaging devices mimicking the function of biological visual systems.
These properties have proven to be interesting in modeling human faces, both from an effectiveness and a privacy-preserving point of view.
This survey paper presents a comprehensive overview of capabilities, challenges and emerging applications in the domain of neuromorphic face analysis.
- Score: 26.357357272526322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic sensors, also known as event cameras, are a class of imaging devices mimicking the function of biological visual systems. Unlike traditional frame-based cameras, which capture fixed images at discrete intervals, neuromorphic sensors continuously generate events that represent changes in light intensity or motion in the visual field with high temporal resolution and low latency. These properties have proven to be interesting in modeling human faces, both from an effectiveness and a privacy-preserving point of view. Neuromorphic face analysis however is still a raw and unstructured field of research, with several attempts at addressing different tasks with no clear standard or benchmark. This survey paper presents a comprehensive overview of capabilities, challenges and emerging applications in the domain of neuromorphic face analysis, to outline promising directions and open issues. After discussing the fundamental working principles of neuromorphic vision and presenting an in-depth overview of the related research, we explore the current state of available data, standard data representations, emerging challenges, and limitations that require further investigation. This paper aims to highlight the recent process in this evolving field to provide to both experienced and newly come researchers an all-encompassing analysis of the state of the art along with its problems and shortcomings.
Related papers
- Hardware, Algorithms, and Applications of the Neuromorphic Vision Sensor: a Review [0.0]
Neuromorphic, or event, cameras represent a transformation in the classical approach to visual sensing encodes detected instantaneous per-pixel illumination changes into an asynchronous stream of event packets.
Their novelty lies in the transition from capturing full picture frames at fixed time intervals to a sparse data format which, with its distinctive qualities, offers potential improvements in various applications.
arXiv Detail & Related papers (2025-04-11T14:46:36Z) - Diffusion Models for Computational Neuroimaging: A Survey [20.24146298881525]
Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior.
diffusion models have shown stability and high-quality generation in natural images.
There is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding.
arXiv Detail & Related papers (2025-02-10T15:20:07Z) - Disentangling representations of retinal images with generative models [12.547633373232026]
We introduce a novel population model for retinal fundus images that disentangles patient attributes from camera effects.
Our results show that our model provides a new perspective on the complex relationship between patient attributes and technical confounders in retinal fundus image generation.
arXiv Detail & Related papers (2024-02-29T14:11:08Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
Soft biometrics such as gait are widely used with face in surveillance tasks like person recognition and re-identification.
We propose a novel adaptive multi-biometric fusion strategy for the dynamic incorporation of gait and face biometric cues by leveraging keyless attention deep neural networks.
arXiv Detail & Related papers (2023-03-24T05:28:35Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals.
Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications.
These developments triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication
arXiv Detail & Related papers (2022-11-07T17:20:39Z) - Modeling biological face recognition with deep convolutional neural
networks [0.0]
Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition.
Recent efforts have started to transfer this achievement to research on biological face recognition.
In this review, we summarize the first studies that use DCNNs to model biological face recognition.
arXiv Detail & Related papers (2022-08-13T16:45:30Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
Recent advances in machine learning have created increasing interest in solving visual computing problems using coordinate-based neural networks.
neural fields have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation.
This report provides context, mathematical grounding, and an extensive review of literature on neural fields.
arXiv Detail & Related papers (2021-11-22T18:57:51Z) - Evaluation of Human and Machine Face Detection using a Novel Distinctive
Human Appearance Dataset [0.76146285961466]
We evaluate current state-of-the-art face-detection models in their ability to detect faces in images.
The evaluation results show that face-detection algorithms do not generalize well to diverse appearances.
arXiv Detail & Related papers (2021-11-01T02:20:40Z) - Data augmentation and image understanding [2.123756175601459]
dissertation explores some advantageous synergies between machine learning, cognitive science and neuroscience.
dissertation focuses on learning representations that are more aligned with visual perception and the biological vision.
arXiv Detail & Related papers (2020-12-28T11:00:52Z) - Reducing Textural Bias Improves Robustness of Deep Segmentation CNNs [8.736194193307451]
Recent findings on natural images suggest that deep neural models can show a textural bias when carrying out image classification tasks.
This study aims to investigate ways in which addressing the textural bias phenomenon could be used to bring up the robustness and transferability of deep segmentation models.
arXiv Detail & Related papers (2020-11-30T18:29:53Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
Social behaviour analysis of mice is an invaluable tool to assess therapeutic efficacy of neurodegenerative diseases.
Because of the potential to create rich descriptions of mouse social behaviors, the use of multi-view video recordings for rodent observations is increasingly receiving much attention.
We propose a novel multiview latent-attention and dynamic discriminative model that jointly learns view-specific and view-shared sub-structures.
arXiv Detail & Related papers (2020-11-04T18:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.