論文の概要: Quality evaluation of Tabby coding assistant using real source code snippets
- arxiv url: http://arxiv.org/abs/2504.08650v1
- Date: Fri, 11 Apr 2025 15:51:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:43.503409
- Title: Quality evaluation of Tabby coding assistant using real source code snippets
- Title(参考訳): 実コードスニペットを用いたタブビー符号化アシスタントの品質評価
- Authors: Marta Borek, Robert Nowak,
- Abstract要約: 大規模言語モデルはソフトウェア開発において一般的なツールとなり、コーディング支援を提供している。
このようなツールによって生成されたコードの正確さと信頼性を適切に測定することは、自然言語のプロンプトによる課題である。
本稿では,アルゴリズムとデータ構造の古典的および普遍的なジャンルの最先端実装を利用する,シンプルなパイプラインを提案する。
- 参考スコア(独自算出の注目度): 5.951442065848393
- License:
- Abstract: Large language models have become a popular tool in software development, providing coding assistance. The proper measurement of the accuracy and reliability of the code produced by such tools is a challenge due to natural language prompts. We propose a simple pipeline that uses state-of-the-art implementation of classic and universal genres of algorithms and data structures. We focus on measuring the quality of TabbyML code assistant due to its open licence and the flexibility in the choice of the language model. Our results presented as cyclomatic complexity, Halstead's Bugs \& Effort and four text-based similarity matrices depict the usability of TabbyML in coding assistance tasks.
- Abstract(参考訳): 大規模言語モデルはソフトウェア開発において一般的なツールとなり、コーディング支援を提供している。
このようなツールによって生成されたコードの正確さと信頼性を適切に測定することは、自然言語のプロンプトによる課題である。
本稿では,アルゴリズムとデータ構造の古典的および普遍的なジャンルの最先端実装を利用する,シンプルなパイプラインを提案する。
オープンライセンスと言語モデルの選択における柔軟性のために,TabbyMLコードアシスタントの品質測定に重点を置いている。
Halstead の Bugs \& Effort と 4 つのテキストベース類似度行列は,コーディング支援タスクにおける TabbyML の利用性を示している。
関連論文リスト
- ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [49.04652315815501]
ツール学習は、大規模な言語モデル(LLM)にとって、外部ツールとのインタラクションを通じて、複雑な現実世界のタスクを解決する重要な機能として登場した。
本稿では,ツール学習をコード生成タスクとして再編成する新しいフレームワークであるToolCoderを提案する。
論文 参考訳(メタデータ) (2025-02-17T03:42:28Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - Code-Mixed Probes Show How Pre-Trained Models Generalise On Code-Switched Text [1.9185059111021852]
事前学習された言語モデルが3次元のコードスイッチトテキストをどのように扱うかを検討する。
その結果,事前学習した言語モデルは,コードスイッチトテキストへの一般化に有効であることが判明した。
論文 参考訳(メタデータ) (2024-03-07T19:46:03Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Investigating the Impact of Vocabulary Difficulty and Code Naturalness
on Program Comprehension [3.35803394416914]
本研究の目的は,言語習得の観点から可読性と可読性を評価することである。
我々は,それらの相関関係を理解するために統計的解析を行い,可読性および可読性予測法の性能向上にコード自然性および語彙難易度を用いることができるか分析する。
論文 参考訳(メタデータ) (2023-08-25T15:15:00Z) - Online Gesture Recognition using Transformer and Natural Language
Processing [0.0]
トランスフォーマーアーキテクチャは、自然言語文のグリフストロークに対応するオンラインジェスチャーのための強力なマシンフレームワークを提供する。
トランスフォーマーアーキテクチャは、自然言語文のグリフストロークに対応するオンラインジェスチャーのための強力なマシンフレームワークを提供する。
論文 参考訳(メタデータ) (2023-05-05T10:17:22Z) - Python Code Generation by Asking Clarification Questions [57.63906360576212]
本稿では,この課題に対して,より斬新で現実的なセットアップを導入する。
我々は、自然言語記述の過小評価は、明確化を問うことで解決できると仮定する。
我々は、生成した合成明確化質問と回答を含む自然言語記述とコードのペアを含む、CodeClarQAという新しいデータセットを収集し、導入する。
論文 参考訳(メタデータ) (2022-12-19T22:08:36Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages [76.93265104421559]
英語以外の自然言語コマンドからコード生成をベンチマークします。
スペイン語,日本語,ロシア語の3言語で896個のNLコードペアを注釈した。
難易度はこれらの3つの言語によって異なるが、全てのシステムは英語にかなり遅れている。
論文 参考訳(メタデータ) (2022-03-16T04:21:50Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
言語モデル(LM)は、事実の知識を捉えるのに驚くほど成功した。
しかし、LMの実際の表現能力の研究は、ほぼ間違いなく英語で行われている。
我々は23の語型的多様言語に対するクローゼスタイルプローブのベンチマークを作成する。
論文 参考訳(メタデータ) (2020-10-13T05:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。