論文の概要: ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
- arxiv url: http://arxiv.org/abs/2504.08713v2
- Date: Tue, 15 Apr 2025 22:08:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 11:15:26.124326
- Title: ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
- Title(参考訳): ProtoECGNet:コントラスト学習を用いたマルチラベルECG分類のためのケースベース解釈型深層学習
- Authors: Sahil Sethi, David Chen, Thomas Statchen, Michael C. Burkhart, Nipun Bhandari, Bashar Ramadan, Brett Beaulieu-Jones,
- Abstract要約: ProtoECGNetは、解釈可能な多ラベルECG分類のためのプロトタイプディープラーニングモデルである。
PTB-XLデータセットから71の診断ラベルについてProtoECGNetを評価する。
ProtoECGNetは、プロトタイプ学習を複雑で多ラベルの時系列分類に効果的にスケールできることを示した。
- 参考スコア(独自算出の注目度): 0.21079694661943607
- License:
- Abstract: Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model's true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments, enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model's projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.
- Abstract(参考訳): 深層学習に基づく心電図(ECG)分類は, 優れた成績を示したが, 透明で忠実な説明が欠如しているため, 臨床導入が遅れている。
サリエンシマップのようなポストホックな手法は、モデルの真の決定プロセスの反映に失敗する可能性がある。
プロトタイプベースの推論は、実際のECGセグメントの学習された表現と類似性に基づいて決定を下すことにより、より透明な代替手段を提供する。
本稿では,解釈可能な多ラベルECG分類のためのプロトタイプベースディープラーニングモデルProtoECGNetを紹介する。
ProtoECGNetは、臨床解釈のワークフローを反映した構造化されたマルチブランチアーキテクチャを採用しており、リズム分類のためのグローバルプロトタイプと1D CNNを統合し、形態素に基づく推論のためのタイムローカライズされたプロトタイプを2D CNNと、拡散異常のためのグローバルプロトタイプを2D CNNと統合している。
各ブランチは、クラスタリング、分離、多様性、および非関連クラスのプロトタイプ間の適切な分離を促進する新しいコントラスト的な損失を組み合わせたマルチラベル学習用に設計されたプロトタイプ損失でトレーニングされる。
PTB-XLデータセットから得られた71の診断ラベルについてProtoECGNetを評価し、構造化されたケースベースの説明を提供しながら、最先端のブラックボックスモデルに対する競合性能を実証した。
プロトタイプの品質を評価するため,最終モデルが提案するプロトタイプについて,構造化された臨床レビューを行い,その評価が代表的かつ明確であることが確認された。
ProtoECGNetは、プロトタイプ学習を、複雑で多ラベルの時系列分類に効果的にスケールできることを示した。
関連論文リスト
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
本研究では,グラフ畳み込みネットワーク(GCN)を導入し,相関行列として各カテゴリ間の先行的共起を多ラベル分類のためのディープラーニングモデルに活用する。
本稿では,GCNからの予測を融合モデルからの予測の補完情報とみなすグラフ・アンサンブル学習モデルを提案する。
論文 参考訳(メタデータ) (2023-07-04T13:19:57Z) - Democratizing Pathological Image Segmentation with Lay Annotators via
Molecular-empowered Learning [20.11220024755348]
レイアノテータの部分ラベルを用いた多クラス細胞セグメンテーションのための分子動力学学習手法を提案する。
分子インフォームドアノテーションを用いてF1=0.8496を達成した。
本手法は,病的セグメンテーションの深部モデルの開発をライアノテータレベルまで民主化する。
論文 参考訳(メタデータ) (2023-05-31T16:54:47Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
条件付き変分オートエンコーダに基づく画像階層化アーキテクチャを提案する。
我々は、連続した潜伏空間を用いて障害の連続を表現し、訓練中にクラスターを見つけ、画像/患者の成層に使用することができる。
本手法は,標準VAEに対して,分類タスクで測定されたkNN精度において,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-25T17:55:31Z) - Class-Specific Semantic Reconstruction for Open Set Recognition [101.24781422480406]
オープンセット認識により、ディープニューラルネットワーク(DNN)は未知のクラスのサンプルを識別できる。
本稿では,自動エンコーダ(AE)とプロトタイプ学習を統合したCSSR(Class-Specific Semantic Reconstruction)を提案する。
複数のデータセットで実験を行った結果,提案手法は閉集合認識と開集合認識の両方において優れた性能を発揮することがわかった。
論文 参考訳(メタデータ) (2022-07-05T16:25:34Z) - Development of Interpretable Machine Learning Models to Detect
Arrhythmia based on ECG Data [0.0]
この論文は、最先端モデルに基づいた畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)分類器を構築する。
大域的および局所的解釈可能性法は、依存変数と独立変数の相互作用を理解するために利用される。
提案したCNNモデルとLSTMモデルの予測を説明する上で,Grad-Camが最も効果的な解釈可能性技術であることが判明した。
論文 参考訳(メタデータ) (2022-05-05T17:29:33Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Weakly Supervised 3D Classification of Chest CT using Aggregated
Multi-Resolution Deep Segmentation Features [5.938730586521215]
CT画像の病巣分類は, 症例レベルのアノテーションが原因で, 局所性に乏しい。
マルチレゾリューション・セグメンテーション・フィーチャーマップを用いて学習した意味構造概念を活用する医療分類器を提案する。
論文 参考訳(メタデータ) (2020-10-31T00:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。