論文の概要: PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2504.08810v1
- Date: Wed, 09 Apr 2025 03:05:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:53:39.950326
- Title: PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration
- Title(参考訳): PriM: マルチエージェントコラボレーションによる原理に基づく材料発見
- Authors: Zheyuan Lai, Yingming Pu,
- Abstract要約: 言語推論型マルチエージェントシステム(MAS)を利用した原理誘導型材料発見システムを提案する。
本フレームワークは,MASのラウンドテーブルシステムにおいて,自動仮説生成と実験検証を統合する。
この枠組みに基づいて,ナノヘリックスのケーススタディにより,より高い材料探索率と特性値を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Complex chemical space and limited knowledge scope with biases holds immense challenge for human scientists, yet in automated materials discovery. Existing intelligent methods relies more on numerical computation, leading to inefficient exploration and results with hard-interpretability. To bridge this gap, we introduce a principles-guided material discovery system powered by language inferential multi-agent system (MAS), namely PriM. Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS, enabling systematic exploration while maintaining scientific rigor. Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value while providing transparent reasoning pathways. This approach develops an automated-and-transparent paradigm for material discovery, with broad implications for rational design of functional materials. Code is publicly available at our \href{https://github.com/amair-lab/PriM}{GitHub}.
- Abstract(参考訳): 複雑な化学空間とバイアスを伴う限られた知識範囲は、人間の科学者にとって大きな課題である。
既存のインテリジェントな手法は数値計算に依存しており、非効率な探索と難解な解釈性を持つ結果をもたらす。
このギャップを埋めるために,言語推論型マルチエージェントシステム(MAS)を利用した原理誘導型材料発見システム(PriM)を導入する。
本フレームワークは,MASのラウンドテーブルシステムにおける自動仮説生成と実験検証を統合し,科学的厳密性を維持しながら系統的な探索を可能にする。
ナノヘリックスのケーススタディは, 透明な推論経路を提供しながら, 材料探索率と特性値の向上を実証する。
このアプローチは、機能材料を合理的に設計するための幅広い意味を持つ、材料発見の自動化および透明なパラダイムを開発する。
コードは我々の \href{https://github.com/amair-lab/PriM}{GitHub} で公開されている。
関連論文リスト
- MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration [13.689620109856783]
我々はMatPilotという名のAI材料科学者を開発し、新しい素材の発見を奨励する能力を示した。
MatPilotのコアとなる強みは、自然言語で対話的な人間と機械のコラボレーションだ。
MatPilotは、ユニークな認知能力、豊富な蓄積された経験、そして人間の生活の好奇心を統合している。
論文 参考訳(メタデータ) (2024-11-10T12:23:44Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
マルチエージェントAIモデルは、新しい金属合金の発見を自動化するために使用される。
MLをベースとした原子間ポテンシャルをモデルとした立方晶(bcc)合金のNbMoTa族に着目した。
LLMをベースとしたエージェントの動的協調により、GNNの予測力を相乗化することにより、システムは巨大な合金設計空間を自律的にナビゲートする。
論文 参考訳(メタデータ) (2024-10-17T17:06:26Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
論文 参考訳(メタデータ) (2024-09-09T12:25:10Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Evaluating the External and Parametric Knowledge Fusion of Large Language Models [72.40026897037814]
我々は、知識融合シナリオをシミュレートするデータ構築と知識注入のための体系的なパイプラインを開発する。
本研究は, LLMにおけるパラメトリック知識の強化が, 知識統合能力を大幅に向上させることを明らかにした。
本研究の目的は,LLM内の外部およびパラメトリック知識の調和を図ることにある。
論文 参考訳(メタデータ) (2024-05-29T11:48:27Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
MLXPはPythonをベースとした,オープンソースの,シンプルで,軽量な実験管理ツールである。
実験プロセスを最小限のオーバーヘッドで合理化し、高いレベルの実践的オーバーヘッドを確保します。
論文 参考訳(メタデータ) (2024-02-21T14:22:20Z) - Materials Expert-Artificial Intelligence for Materials Discovery [39.67752644916519]
我々は,この人間の直感をカプセル化し,具体化するために,"Materials Expert-Artificial Intelligence"(ME-AI)を導入する。
ME-AIは専門家の直観を独立して再現し、それを拡張した。
私たちの成功は、機械学習に支援された材料発見を約束するものとして、“マシンボットによる人間の洞察”アプローチを指摘しています。
論文 参考訳(メタデータ) (2023-12-05T14:29:18Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - Unsupervised physics-informed disentanglement of multimodal data for
high-throughput scientific discovery [4.923937591056569]
物理インフォームドマルチモーダルオートエンコーダ(PIMA)を紹介する。
PIMAはマルチモーダルな科学データセットで共有情報を発見するための変分推論フレームワークである。
金属添加物製造からの格子状メタマテリアルのデータセットは正確なクロスモーダル推論を示す。
論文 参考訳(メタデータ) (2022-02-07T14:47:00Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。