When Federated Learning Meets Quantum Computing: Survey and Research Opportunities
- URL: http://arxiv.org/abs/2504.08814v1
- Date: Wed, 09 Apr 2025 07:29:33 GMT
- Title: When Federated Learning Meets Quantum Computing: Survey and Research Opportunities
- Authors: Aakar Mathur, Ashish Gupta, Sajal K. Das,
- Abstract summary: Quantum Federated Learning (QFL) is an emerging field that harnesses advances in Quantum Computing (QC) to improve the scalability and efficiency of decentralized Federated Learning (FL) models.<n>This paper provides a systematic and comprehensive survey of the emerging problems and solutions when FL meets QC.
- Score: 8.320331363588043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Federated Learning (QFL) is an emerging field that harnesses advances in Quantum Computing (QC) to improve the scalability and efficiency of decentralized Federated Learning (FL) models. This paper provides a systematic and comprehensive survey of the emerging problems and solutions when FL meets QC, from research protocol to a novel taxonomy, particularly focusing on both quantum and federated limitations, such as their architectures, Noisy Intermediate Scale Quantum (NISQ) devices, and privacy preservation, so on. This work explores key developments and integration strategies, along with the impact of quantum computing on FL, keeping a sharp focus on hybrid quantum-classical approaches. The paper offers an in-depth understanding of how the strengths of QC, such as gradient hiding, state entanglement, quantum key distribution, quantum security, and quantum-enhanced differential privacy, have been integrated into FL to ensure the privacy of participants in an enhanced, fast, and secure framework. Finally, this study proposes potential future directions to address the identified research gaps and challenges, aiming to inspire faster and more secure QFL models for practical use.
Related papers
- Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
Quantum Machine Learning represents a paradigm shift at the intersection of Quantum Computing and Machine Learning.<n>The field faces significant challenges, including hardware constraints, noise, and limited qubit coherence.<n>This survey aims to provide a foundational resource for advancing Quantum Machine Learning toward practical, real-world applications.
arXiv Detail & Related papers (2025-01-16T13:25:49Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
This paper introduces a novel Bayesian approach using Quantum Bayesian Networks (QBNs) to classify imbalanced datasets.<n>We effectively address the challenge of integrating quantum enhancements with classical machine learning architectures.<n>Our study demonstrates significant advances in detecting and classifying anomalies, contributing to more effective and precise environmental monitoring and management.
arXiv Detail & Related papers (2024-12-24T15:44:26Z) - Quantum Multi-Agent Reinforcement Learning for Aerial Ad-hoc Networks [0.19791587637442667]
This paper presents an aerial communication use case and introduces a hybrid quantum-classical (HQC) ML algorithm to solve it.
Results show a slight increase in performance for the quantum-enhanced solution with respect to a comparable classical algorithm.
These promising results show the potential of QMARL to industrially-relevant complex use cases.
arXiv Detail & Related papers (2024-04-26T15:57:06Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Towards Quantum Federated Learning [80.1976558772771]
Quantum Federated Learning aims to enhance privacy, security, and efficiency in the learning process.
We aim to provide a comprehensive understanding of the principles, techniques, and emerging applications of QFL.
As the field of QFL continues to progress, we can anticipate further breakthroughs and applications across various industries.
arXiv Detail & Related papers (2023-06-16T15:40:21Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.