Quantum Multi-Agent Reinforcement Learning for Aerial Ad-hoc Networks
- URL: http://arxiv.org/abs/2404.17499v1
- Date: Fri, 26 Apr 2024 15:57:06 GMT
- Title: Quantum Multi-Agent Reinforcement Learning for Aerial Ad-hoc Networks
- Authors: Theodora-Augustina Drăgan, Akshat Tandon, Carsten Strobel, Jasper Simon Krauser, Jeanette Miriam Lorenz,
- Abstract summary: This paper presents an aerial communication use case and introduces a hybrid quantum-classical (HQC) ML algorithm to solve it.
Results show a slight increase in performance for the quantum-enhanced solution with respect to a comparable classical algorithm.
These promising results show the potential of QMARL to industrially-relevant complex use cases.
- Score: 0.19791587637442667
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum machine learning (QML) as combination of quantum computing with machine learning (ML) is a promising direction to explore, in particular due to the advances in realizing quantum computers and the hoped-for quantum advantage. A field within QML that is only little approached is quantum multi-agent reinforcement learning (QMARL), despite having shown to be potentially attractive for addressing industrial applications such as factory management, cellular access and mobility cooperation. This paper presents an aerial communication use case and introduces a hybrid quantum-classical (HQC) ML algorithm to solve it. This use case intends to increase the connectivity of flying ad-hoc networks and is solved by an HQC multi-agent proximal policy optimization algorithm in which the core of the centralized critic is replaced with a data reuploading variational quantum circuit. Results show a slight increase in performance for the quantum-enhanced solution with respect to a comparable classical algorithm, earlier reaching convergence, as well as the scalability of such a solution: an increase in the size of the ansatz, and thus also in the number of trainable parameters, leading to better outcomes. These promising results show the potential of QMARL to industrially-relevant complex use cases.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Explainable Quantum Machine Learning [0.7046417074932257]
Methods of artificial intelligence (AI) and especially machine learning (ML) have been growing ever more complex.
In parallel, quantum machine learning (QML) is emerging with the ongoing improvement of quantum computing hardware.
arXiv Detail & Related papers (2023-01-22T15:17:12Z) - Quantum Multi-Agent Actor-Critic Neural Networks for Internet-Connected
Multi-Robot Coordination in Smart Factory Management [14.396716863428882]
This paper verifies the potential of QRL, which will be further realized by implementing quantum multi-agent reinforcement learning (QMARL) from QRL.
It is proposed for Internet-connected autonomous multi-robot control and coordination in smart factory applications.
A simulation corroborates that the proposed QMARL-based autonomous multi-robot control and coordination performs better than the other frameworks.
arXiv Detail & Related papers (2023-01-04T04:28:39Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Copula-based Risk Aggregation with Trapped Ion Quantum Computers [1.541403735141431]
Copulas are mathematical tools for modeling joint probability distributions.
Recent finding that copulas can be expressed as maximally entangled quantum states has revealed a promising approach to practical quantum advantages.
We study the training of QCBMs with different levels of precision and circuit design on a simulator and a state-of-the-art trapped ion quantum computer.
arXiv Detail & Related papers (2022-06-23T18:39:30Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.