論文の概要: Probabilistic QoS Metric Forecasting in Delay-Tolerant Networks Using Conditional Diffusion Models on Latent Dynamics
- arxiv url: http://arxiv.org/abs/2504.08821v1
- Date: Wed, 09 Apr 2025 15:40:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:06.467398
- Title: Probabilistic QoS Metric Forecasting in Delay-Tolerant Networks Using Conditional Diffusion Models on Latent Dynamics
- Title(参考訳): 遅延ダイナミクスの条件拡散モデルを用いた遅延耐性ネットワークにおける確率的QoSメトリック予測
- Authors: Enming Zhang, Zheng Liu, Yu Xiang, Yanwen Qu,
- Abstract要約: DTNの保守と運用に一般的に使用されるアクティブメトリック予測は、レイテンシ、スループット、エネルギー消費、信頼性に関するネットワーク性能を向上させることができる。
時系列予測における従来の平均回帰法は、データの複雑さを適切に把握できないため、ルーティングなどのDTNの運用タスクでは、性能が低下する。
本稿では、DTNにおけるメトリクスの予測を多変量時系列上の確率予測問題として定式化し、これらのサンプルの分布を特徴付けることによって予測の不確かさを定量化することができる。
- 参考スコア(独自算出の注目度): 5.038401442188212
- License:
- Abstract: Active QoS metric prediction, commonly employed in the maintenance and operation of DTN, could enhance network performance regarding latency, throughput, energy consumption, and dependability. Naturally formulated as a multivariate time series forecasting problem, it attracts substantial research efforts. Traditional mean regression methods for time series forecasting cannot capture the data complexity adequately, resulting in deteriorated performance in operational tasks in DTNs such as routing. This paper formulates the prediction of QoS metrics in DTN as a probabilistic forecasting problem on multivariate time series, where one could quantify the uncertainty of forecasts by characterizing the distribution of these samples. The proposed approach hires diffusion models and incorporates the latent temporal dynamics of non-stationary and multi-mode data into them. Extensive experiments demonstrate the efficacy of the proposed approach by showing that it outperforms the popular probabilistic time series forecasting methods.
- Abstract(参考訳): DTNの保守と運用に一般的に使用されるアクティブQoSメトリック予測は、レイテンシ、スループット、エネルギー消費、信頼性に関するネットワーク性能を向上させることができる。
多変量時系列予測問題として自然に定式化され、かなりの研究努力が集まっている。
時系列予測における従来の平均回帰法は、データの複雑さを適切に把握できないため、ルーティングなどのDTNの運用タスクでは、性能が低下する。
本稿では,DTNにおけるQoS指標の予測を多変量時系列上の確率予測問題として定式化する。
提案手法は拡散モデルを採用し,非定常・多モードデータの潜時力学を応用した。
広汎な実験は,提案手法の有効性を実証し,一般的な確率的時系列予測法より優れていることを示した。
関連論文リスト
- Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
本稿では,CCDM(Contrastive Conditional Diffusion)モデルを提案する。
提案したCCDMは,現在最先端の拡散予測器と比較して優れた予測能力を示すことができる。
論文 参考訳(メタデータ) (2024-10-03T03:13:15Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
時系列の非条件学習拡散モデルであるTSDiffを提案する。
提案する自己誘導機構により、補助的ネットワークやトレーニング手順の変更を必要とせず、推論中に下流タスクに対してTSDiffを条件付けることができる。
本研究では,予測,改良,合成データ生成という3つの時系列タスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-21T10:56:36Z) - DANLIP: Deep Autoregressive Networks for Locally Interpretable
Probabilistic Forecasting [0.0]
本稿では,本質的に解釈可能な,深層学習に基づく確率的時系列予測アーキテクチャを提案する。
我々のモデルは解釈可能であるだけでなく、最先端の確率的時系列予測手法に匹敵する性能を提供する。
論文 参考訳(メタデータ) (2023-01-05T23:40:23Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。