論文の概要: Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.02168v1
- Date: Thu, 3 Oct 2024 03:13:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:15:54.236205
- Title: Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting
- Title(参考訳): 多変量確率時系列予測のためのチャネル対応コントラスト条件拡散
- Authors: Siyang Li, Yize Chen, Hui Xiong,
- Abstract要約: 本稿では,CCDM(Contrastive Conditional Diffusion)モデルを提案する。
提案したCCDMは,現在最先端の拡散予測器と比較して優れた予測能力を示すことができる。
- 参考スコア(独自算出の注目度): 19.383395337330082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting faithful trajectories of multivariate time series from practical scopes is essential for reasonable decision-making. Recent methods majorly tailor generative conditional diffusion models to estimate the target temporal predictive distribution. However, it remains an obstacle to enhance the exploitation efficiency of given implicit temporal predictive information to bolster conditional diffusion learning. To this end, we propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM to achieve desirable Multivariate probabilistic forecasting, obviating the need for curated temporal conditioning inductive biases. In detail, we first design a channel-centric conditional denoising network to manage intra-variate variations and cross-variate correlations, which can lead to scalability on diverse prediction horizons and channel numbers. Then, we devise an ad-hoc denoising-based temporal contrastive learning to explicitly amplify the predictive mutual information between past observations and future forecasts. It can coherently complement naive step-wise denoising diffusion training and improve the forecasting accuracy and generality on unknown test time series. Besides, we offer theoretic insights on the benefits of such auxiliary contrastive training refinement from both neural mutual information and temporal distribution generalization aspects. The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters over a comprehensive benchmark, with best MSE and CRPS outcomes on $66.67\%$ and $83.33\%$ cases. Our code is publicly available at https://github.com/LSY-Cython/CCDM.
- Abstract(参考訳): 多変量時系列の忠実な軌跡を実際的な範囲から予測することは、合理的な意思決定に不可欠である。
近年の手法は, 時間的予測分布を推定するために, 生成条件拡散モデルを大まかに調整している。
しかし、条件拡散学習を促進するために、暗黙の時間的予測情報の活用効率を高めることは依然として障害である。
この目的のために, CCDM (Contrastive Conditional Diffusion model) と題する汎用チャネル対応コントラスト条件拡散モデルを提案する。
本稿では,まず,変量内変動と変量間相関を管理するために,チャネル中心の条件記述ネットワークを設計する。
そこで我々は,過去の観測と将来の予測との間の予測的相互情報を明確に増幅するために,アドホックな認知に基づく時間的コントラスト学習を考案した。
ステップワイドな拡散訓練を忠実に補完し、未知のテスト時系列における予測精度と一般化を改善する。
さらに、ニューラルネットワーク情報と時間分布一般化の両面から、このような補助的コントラスト訓練改善の利点を理論的に考察する。
提案したCCDMは、総合的なベンチマークよりも最先端の拡散予測器よりも優れた予測能力を示し、MSEとCRPSの最良の結果は6.67 %$と8.33 %$のケースである。
私たちのコードはhttps://github.com/LSY-Cython/CCDMで公開されています。
関連論文リスト
- Series-to-Series Diffusion Bridge Model [8.590453584544386]
既存の拡散法を包含する包括的フレームワークを提案する。
拡散に基づく新しい時系列予測モデルであるシリーズ・ツー・シリーズ拡散ブリッジモデル(mathrmS2DBM$)を提案する。
実験の結果,$mathrmS2DBM$はポイントツーポイント予測において優れた性能を示すことがわかった。
論文 参考訳(メタデータ) (2024-11-07T07:37:34Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
マルチモーダル軌道予測のための木サンプリングを用いたゴールガイド拡散モデルを提案する。
2段階のツリーサンプリングアルゴリズムが提案され、一般的な特徴を活用して推論時間を短縮し、マルチモーダル予測の精度を向上させる。
実験により,提案フレームワークは,公開データセットにおけるリアルタイム推論速度と同等の最先端性能を達成できることが実証された。
論文 参考訳(メタデータ) (2023-11-25T03:55:06Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Conditional Approximate Normalizing Flows for Joint Multi-Step
Probabilistic Electricity Demand Forecasting [32.907448044102864]
本研究では,条件付き近似正規化流(CANF)を導入し,長い時間的地平線上で相関が存在する場合の確率的多段階時系列予測を行う。
実験の結果, 条件付き近似正規化フローは, 多段階予測精度で他の手法よりも優れており, 最大10倍のスケジューリング決定が導かれることがわかった。
論文 参考訳(メタデータ) (2022-01-08T03:42:12Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。