Artificial Intelligence Augmented Medical Imaging Reconstruction in Radiation Therapy
- URL: http://arxiv.org/abs/2504.08844v1
- Date: Thu, 10 Apr 2025 23:02:45 GMT
- Title: Artificial Intelligence Augmented Medical Imaging Reconstruction in Radiation Therapy
- Authors: Di Xu,
- Abstract summary: We present a series of AI-driven medical imaging reconstruction frameworks for enhanced radiotherapy.<n>These frameworks are designed to improve CT image reconstruction quality and speed, refine dual-energy CT (DECT) multi-material decomposition (MMD), and significantly accelerate 4D MRI acquisition.
- Score: 1.0360038906321904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently acquired and precisely reconstructed imaging are crucial to the success of modern radiation therapy (RT). Computed tomography (CT) and magnetic resonance imaging (MRI) are two common modalities for providing RT treatment planning and delivery guidance/monitoring. In recent decades, artificial intelligence (AI) has emerged as a powerful and widely adopted technique across various fields, valued for its efficiency and convenience enabled by implicit function definition and data-driven feature representation learning. Here, we present a series of AI-driven medical imaging reconstruction frameworks for enhanced radiotherapy, designed to improve CT image reconstruction quality and speed, refine dual-energy CT (DECT) multi-material decomposition (MMD), and significantly accelerate 4D MRI acquisition.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - Artificial Intelligence-Based Image Reconstruction in Cardiac Magnetic
Resonance [10.60359890890818]
In recent years, there has been a significant growth in the use of AI and Machine Learning algorithms, especially Deep Learning (DL) based methods, for medical image reconstruction.
The use of DL-based image reconstruction also provides promising opportunities to transform the way cardiac images are acquired and reconstructed.
In this chapter, we will review recent advances in DL-based reconstruction techniques for cardiac imaging, with emphasis on cardiac magnetic resonance (CMR) image reconstruction.
arXiv Detail & Related papers (2022-09-21T12:13:18Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - AI-Enabled Ultra-Low-Dose CT Reconstruction [8.135337706680097]
In this paper, we demonstrate that AI-powered CT reconstruction offers diagnostic image quality at an ultra-low-dose level comparable to that of radiography.
The reconstruction results from clinical datasets show that excellent images can be reconstructed using SUGAR from 36 projections.
arXiv Detail & Related papers (2021-06-17T22:13:11Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Structurally aware bidirectional unpaired image to image translation
between CT and MR [0.14788776577018314]
Deep learning techniques can help us to leverage the possibility of an image to image translation between multiple imaging modalities.
These techniques will help to conduct surgical planning under CT with the feedback of MRI information.
arXiv Detail & Related papers (2020-06-05T11:21:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.