Laser-induced spectral diffusion of T centers in silicon nanophotonic devices
- URL: http://arxiv.org/abs/2504.08898v1
- Date: Fri, 11 Apr 2025 18:08:02 GMT
- Title: Laser-induced spectral diffusion of T centers in silicon nanophotonic devices
- Authors: Xueyue Zhang, Niccolo Fiaschi, Lukasz Komza, Hanbin Song, Thomas Schenkel, Alp Sipahigil,
- Abstract summary: Color centers in silicon are emerging as spin-photon interfaces operating at telecommunication wavelengths.<n>We study the optical spectral diffusion of T centers in a silicon photonic crystal cavity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color centers in silicon are emerging as spin-photon interfaces operating at telecommunication wavelengths. The nanophotonic device integration of silicon color centers via ion implantation leads to significant optical linewidth broadening, which makes indistinguishable photon generation challenging. Here, we study the optical spectral diffusion of T centers in a silicon photonic crystal cavity. We investigate the linewidth broadening timescales and origins by measuring the temporal correlations of the resonance frequency under different conditions. Spectral hole burning measurements reveal no spectral broadening at short timescales from 102 ns to 725 ns. We probe broadening at longer timescales using a check pulse to herald the T center frequency and a probe pulse to measure frequency after a wait time. The optical resonance frequency is stable up to 3 ms in the dark. Laser pulses below the silicon band gap applied during the wait time leads to linewidth broadening. Our observations establish laser-induced processes as the dominant spectral diffusion mechanism for T centers in devices, and inform materials and feedback strategies for indistinguishable photon generation.
Related papers
- Broadband Fourier transform spectroscopy of quantum emitters photoluminescence with sub-nanosecond temporal resolution [0.6127128845694289]
We experimentally demonstrate that the system enables spectroscopy of quantum emitters over a broad wavelength interval from the near-infrared to the telecom range.
The high temporal resolution of single-photon detectors, which can be on the order of tens of picoseconds, enables the monitoring of spin-dependent spectral changes on sub-nanosecond timescales.
arXiv Detail & Related papers (2025-04-21T17:38:20Z) - Laser-induced spectral diffusion and excited-state mixing of silicon T centres [0.0]
We study the dynamics of spectral wandering in nanophotonics-coupled, individual silicon T centres.<n>We demonstrate a 35x narrowing of the emitter linewidth to 110 MHz using a resonance-check scheme.<n>We report laser-induced spin-mixing in the excited state and discuss potential mechanisms common to both phenomena.
arXiv Detail & Related papers (2025-04-14T06:09:17Z) - Optical spin readout of a silicon color center in the telecom L-band [0.7545833157486899]
Efficient spin-photon interfaces are crucial for quantum networks, enabling entanglement distribution and information transfer over long distances.<n>Here, we demonstrate the optical detection of spin states in the C center, a carbon-oxygen defect in silicon that exhibits a zero-phonon line at 1571 nm.<n>By combining optical excitation with microwave driving, we achieve optically detected magnetic resonance, enabling spin-state readout via telecom-band optical transitions.
arXiv Detail & Related papers (2025-02-11T15:22:38Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Submegahertz spectral width photon pair source based on fused silica
microspheres [0.0]
High efficiency, sub-MHz bandwidth photon pair generators will enable the field of quantum technology to transition from laboratory demonstrations to transformational applications involving information transfer from photons to atoms.
We use an ultra-high quality factor (Q) fused silica microsphere resonant cavity to form a photon pair generator.
We demonstrate the extraction of the spectral profile of a single peak in the single-photon frequency comb from a measurement of the signal-idler time of emission distribution.
arXiv Detail & Related papers (2021-10-25T23:56:19Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - T centres in photonic silicon-on-insulator material [0.0]
T radiation damage centres in silicon provide a promising photon-spin interface.
These defect centres have only been studied as ensembles in bulk silicon.
We demonstrate the reliable creation of high concentration T centre ensembles in the 220 nm device layer of silicon-on-insulator (SOI) wafers.
arXiv Detail & Related papers (2021-03-06T00:34:51Z) - Lifetime-resolved Photon-Correlation Fourier Spectroscopy [0.0]
Simultaneous measurement of the associated spectral dynamics requires a technique with a high spectral and temporal resolution.
We propose a pulsed excitation-laser analog of Photon-Correlation Fourier Spectroscopy (PCFS), which extracts the lineshape and spectral diffusion dynamics along the emission lifetime trajectory of the emitter.
arXiv Detail & Related papers (2021-02-07T03:24:53Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.