論文の概要: seg2med: a bridge from artificial anatomy to multimodal medical images
- arxiv url: http://arxiv.org/abs/2504.09182v2
- Date: Thu, 12 Jun 2025 23:39:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 13:34:01.536272
- Title: seg2med: a bridge from artificial anatomy to multimodal medical images
- Title(参考訳): seg2med: 人工解剖学からマルチモーダル医療画像へのブリッジ
- Authors: Zeyu Yang, Zhilin Chen, Yipeng Sun, Anika Strittmatter, Anish Raj, Ahmad Allababidi, Johann S. Rink, Frank G. Zöllner,
- Abstract要約: seg2medは解剖学駆動型マルチモーダル医用画像合成のためのフレームワークである。
解剖学的マップは、実際の患者データ、XCATデジタルファントム、および複数の患者の臓器を組み合わせた合成解剖の3つの源から独立に派生している。
このフレームワークは、実データと比較して、CTで0.94、MRで0.89、CTで0.78のSSIMを実現する。
- 参考スコア(独自算出の注目度): 5.92914320764123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present seg2med, a modular framework for anatomy-driven multimodal medical image synthesis. The system integrates three components to enable high-fidelity, cross-modality generation of CT and MR images based on structured anatomical priors. First, anatomical maps are independently derived from three sources: real patient data, XCAT digital phantoms, and synthetic anatomies created by combining organs from multiple patients. Second, we introduce PhysioSynth, a modality-specific simulator that converts anatomical masks into prior volumes using tissue-dependent parameters (e.g., HU, T1, T2, proton density) and modality-specific signal models. It supports simulation of CT and multiple MR sequences including GRE, SPACE, and VIBE. Third, the synthesized anatomical priors are used to train 2-channel conditional denoising diffusion models, which take the anatomical prior as structural condition alongside the noisy image, enabling generation of high-quality, structurally aligned images. The framework achieves SSIM of 0.94 for CT and 0.89 for MR compared to real data, and FSIM of 0.78 for simulated CT. The generative quality is further supported by a Frechet Inception Distance (FID) of 3.62 for CT synthesis. In modality conversion, seg2med achieves SSIM of 0.91 for MR to CT and 0.77 for CT to MR. Anatomical fidelity evaluation shows synthetic CT achieves mean Dice scores above 0.90 for 11 key abdominal organs, and above 0.80 for 34 of 59 total organs. These results underscore seg2med's utility in cross-modality synthesis, data augmentation, and anatomy-aware medical AI.
- Abstract(参考訳): 解剖学駆動型マルチモーダル医用画像合成のためのモジュラーフレームワークであるseg2medを提案する。
このシステムは3つのコンポーネントを統合し、構造化された解剖学的先行に基づいて、CTとMR画像の高忠実で異質な生成を可能にする。
まず、解剖学的マップは、実際の患者データ、XCATデジタルファントム、および複数の患者の臓器を組み合わせた合成解剖の3つのソースから独立に派生している。
第2に、組織依存パラメータ(例えば、HU、T1、T2、陽子密度)と変調特異的信号モデルを用いて、解剖学的マスクを先行ボリュームに変換するモジュラリティ特異的シミュレータであるPhyloSynthを紹介する。
CTとGRE、SPACE、VIBEを含む複数のMRシーケンスのシミュレーションをサポートする。
第3に、合成された解剖前駆体を用いて、2チャンネル条件付き拡散モデルを訓練し、解剖前駆体をノイズ画像とともに構造条件として取り、高品質で構造的に整列した画像を生成する。
このフレームワークは、実データと比較して、CTで0.94、MRで0.89、CTで0.78のSSIMを実現する。
生成品質は、CT合成のための3.62のFrechet Inception Distance(FID)によってさらに支持される。
seg2med は MR から CT への SSIM 0.91 と CT から MR への SSIM 0.77 を達成している。 解剖学的忠実度評価の結果, 合成CT は 11 個の腹腔内臓器に対して 0.90 以上の Dice スコア, 59 個の総臓器中 34 以上の Dice スコアを達成している。
これらの結果は、クロスモダリティ合成、データ拡張、解剖学的に認識された医療AIにおけるseg2medの有用性を裏付けるものである。
関連論文リスト
- Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface [13.161605581865357]
Surf2CTは、外部表面スキャンと人口統計データから人間の胴体の全3DCTボリュームを合成するフレームワークである。
我々は、マサチューセッツ総合病院(MGH)から得られた3,198個の胴体CTスキャンとAutoPETチャレンジを組み合わせたデータセットでモデルをトレーニングした。
論文 参考訳(メタデータ) (2025-05-28T16:01:36Z) - JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections [45.14515691206885]
多物質分解(MMD)は、ヒト体内の組織組成を定量的に再構築することを可能にする。
従来のMDDは、通常、スペクトルCTスキャナーと事前に測定したX線エネルギースペクトルを必要とし、臨床応用性を大幅に制限する。
本稿では,多材料構成を共同で再構成し,SECT投影から直接エネルギースペクトルを推定する一段階SEMMDフレームワークであるJSoverを提案する。
論文 参考訳(メタデータ) (2025-05-12T23:32:21Z) - Revolutionizing Brain Tumor Imaging: Generating Synthetic 3D FA Maps from T1-Weighted MRI using CycleGAN Models [18.167577989282247]
本稿では,T1強調MRIスキャンから直接FAマップを生成するためのCycleGANに基づくアプローチを提案する。
提案モデルでは,未確認データに基づいて高忠実度マップを作製し,特に腫瘍領域での強靭な性能を示す。
論文 参考訳(メタデータ) (2025-05-06T16:05:22Z) - SYN-LUNGS: Towards Simulating Lung Nodules with Anatomy-Informed Digital Twins for AI Training [1.4820790252910163]
肺がんスクリーニングのための生成モデルは、データ不足によって制限され、一般化可能性と臨床応用性に影響を与える。
詳細なアノテーションで高品質な3DCT画像を生成するためのフレームワークであるSyn-LUNGSを紹介する。
データセットには1,044個のCTスキャンから3,072個の結節画像が含まれ、512個の病変と174個のデジタルツインがある。
論文 参考訳(メタデータ) (2025-02-28T16:02:37Z) - MRI Breast tissue segmentation using nnU-Net for biomechanical modeling [0.07499722271664144]
乳がんの診断と治療計画の改善には,MRIと2次元マンモグラフィの併用が不可欠である。
本稿では, 生体力学的乳房モデルの2つの側面において拡張することにより, これらの課題に対処する。
我々は, nnU-Net アーキテクチャを用いて, 乳房MRIデータの詳細な6クラスセグメンテーションを行った。
前景全体のセグメンテーションは、2Dと3DのU-Net構成のアンサンブルにより平均Dice係数0.83に達した。
論文 参考訳(メタデータ) (2024-11-27T22:15:04Z) - Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation [0.0]
U-Netベースのディープラーニング技術は、自動化された医用画像セグメンテーションのための有望なアプローチとして登場しつつある。
腎腫瘍の診断のためのCTスキャン画像のエンドツーエンド自動セマンティックセマンティックセグメンテーションのための改良されたU-Netモデルを提案する。
論文 参考訳(メタデータ) (2024-10-20T19:02:41Z) - Improved 3D Whole Heart Geometry from Sparse CMR Slices [3.701571763780745]
心臓磁気共鳴法(CMR)とCT法(CT)は、心臓血管疾患の患者を診断するための2つの一般的な非侵襲的画像診断法である。
CMRは通常、複数のスパース2Dスライスを取得し、スライス間には避けられない呼吸運動アーチファクトを持ち、CTは等方性密度データを取得するが、電離放射線を使用する。
スライスシフトアルゴリズム(SSA)、空間変換器ネットワーク(STN)、ラベル変換器ネットワーク(LTN)の組み合わせを検討する。
論文 参考訳(メタデータ) (2024-08-14T13:03:48Z) - Deep learning-based brain segmentation model performance validation with clinical radiotherapy CT [0.0]
本研究はCT(Computed Tomography)におけるSynthSegのロバスト脳セグメンテーションモデルを検証する。
The Freesurfer Imaging SuiteのコンポーネントであるSynthSegモデルを用いて、CTとMRIから脳のセグメンテーションを得た。
総合的なQCスコアに基づいてCTの性能はMRIより低いが,QCベースの閾値設定では低品質なセグメンテーションを除外できる。
論文 参考訳(メタデータ) (2024-06-25T09:56:30Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
nnU-Netモデル(TotalSegmentator)をMRIおよび80原子構造で訓練した。
予測されたセグメンテーションと専門家基準セグメンテーションとの間には,ディススコアが算出され,モデル性能が評価された。
オープンソースで使いやすいモデルは、80構造の自動的で堅牢なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT [29.48170108608303]
このモデルは、英国バイオバンクの1200個の手動3D軸MRIスキャン、221個の社内MRIスキャン、1228個のCTスキャンでトレーニングされた。
明確な臓器(肺: DSC 0.96, 心臓: DSC 0.94)と解剖学的変化のある臓器(皮膚: DSC 0.96, 腎臓: DSC 0.95)に対して高い精度を示す。
CTとよく似ており、AMOS CTデータではDSC平均0.84$pm$ 0.11となる。
論文 参考訳(メタデータ) (2024-05-10T13:15:42Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI
using Deep Learning [0.0]
我々は,CTおよびMRIを用いたソフト・タウト・腫瘍(STT)のための,最小限の対話型深層学習に基づくセグメンテーション法を開発した。
この方法は、畳み込みニューラルネットワークの入力として、腫瘍の極端な境界付近で6つの点をクリックする必要がある。
論文 参考訳(メタデータ) (2024-02-12T16:15:28Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
本稿では,脳腫瘍の検出とセグメンテーションを改善するための2段階生成モデル(TSGM)を提案する。
CycleGANは、未ペアデータに基づいてトレーニングされ、データとして正常な画像から異常な画像を生成する。
VE-JPは、合成対の異常画像をガイドとして使用して、健康な画像の再構成を行う。
論文 参考訳(メタデータ) (2023-11-06T12:58:26Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Evaluation of Synthetically Generated CT for use in Transcranial Focused
Ultrasound Procedures [5.921808547303054]
経頭蓋骨集束超音波(TFUS)は、頭蓋骨を通して音を非侵襲的に、しばしばMRI誘導下で小さな領域に集束する治療用超音波法である。
CT画像は、個々の頭蓋骨間で異なる音響特性を推定するために使われ、tFUS手術中に効果的に焦点を合わせることができる。
そこで我々は,3Dパッチベースの条件付き生成対向ネットワーク(cGAN)を用いて,日常的に取得したT1強調MRIからCT画像を合成した。
我々は,Kranion を用いた tFUS 計画のための sCT と実CT (rCT) 画像を比較し,音響ツールボックスを用いたシミュレーションを行った。
論文 参考訳(メタデータ) (2022-10-26T15:15:24Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。