論文の概要: Revolutionizing Brain Tumor Imaging: Generating Synthetic 3D FA Maps from T1-Weighted MRI using CycleGAN Models
- arxiv url: http://arxiv.org/abs/2505.03662v1
- Date: Tue, 06 May 2025 16:05:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.465895
- Title: Revolutionizing Brain Tumor Imaging: Generating Synthetic 3D FA Maps from T1-Weighted MRI using CycleGAN Models
- Title(参考訳): 革命的脳腫瘍画像:CycleGANモデルを用いたT1強調MRIから合成3次元FAマップを生成する
- Authors: Xin Du, Francesca M. Cozzi, Rajesh Jena,
- Abstract要約: 本稿では,T1強調MRIスキャンから直接FAマップを生成するためのCycleGANに基づくアプローチを提案する。
提案モデルでは,未確認データに基づいて高忠実度マップを作製し,特に腫瘍領域での強靭な性能を示す。
- 参考スコア(独自算出の注目度): 18.167577989282247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fractional anisotropy (FA) and directionally encoded colour (DEC) maps are essential for evaluating white matter integrity and structural connectivity in neuroimaging. However, the spatial misalignment between FA maps and tractography atlases hinders their effective integration into predictive models. To address this issue, we propose a CycleGAN based approach for generating FA maps directly from T1-weighted MRI scans, representing the first application of this technique to both healthy and tumour-affected tissues. Our model, trained on unpaired data, produces high fidelity maps, which have been rigorously evaluated using Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), demonstrating particularly robust performance in tumour regions. Radiological assessments further underscore the model's potential to enhance clinical workflows by providing an AI-driven alternative that reduces the necessity for additional scans.
- Abstract(参考訳): 分画異方性(FA)と方向エンコードカラー(DEC)マップは、ニューロイメージングにおけるホワイトマターの整合性と構造接続性を評価する上で不可欠である。
しかし, FAマップとトラクトログラフィー・アトラスの空間的不整合は, 予測モデルへの効果的な統合を妨げる。
そこで本研究では,T1強調MRIスキャンから直接FAマップを生成するためのCycleGANベースのアプローチを提案する。
SSIMとPak Signal-to-Noise Ratio(PSNR)を用いて厳密に評価され,特に腫瘍領域での強靭な性能を示す。
放射線学的評価は、追加スキャンの必要性を減らすAI駆動の代替手段を提供することで、臨床ワークフローを強化するモデルの可能性をさらに強調する。
関連論文リスト
- Ensemble Learning and 3D Pix2Pix for Comprehensive Brain Tumor Analysis in Multimodal MRI [2.104687387907779]
本研究では,ハイブリッドトランスモデルと畳み込みニューラルネットワーク(CNN)を用いたアンサンブル学習の強みを活用した統合的アプローチを提案する。
本手法は,アキシャルアテンションとトランスフォーマーエンコーダを併用して,高機能な空間関係モデリングを行う。
その結果,Dice similarity Coefficient (DSC), Hausdorff Distance (HD95), Structure similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE) などの画期的な評価が得られた。
論文 参考訳(メタデータ) (2024-12-16T15:10:53Z) - GAN-Based Architecture for Low-dose Computed Tomography Imaging Denoising [1.0138723409205497]
GAN(Generative Adversarial Networks)は低線量CT(LDCT)領域における革命的要素として浮上している。
本総説では,GANに基づくLDCT復調技術の急速な進歩を概観する。
論文 参考訳(メタデータ) (2024-11-14T15:26:10Z) - TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting [3.9347915104376168]
脳の構造的整合性に影響を与える疾患のモニタリングには、磁気共鳴(MR)画像の自動解析が必要である。
画像空間で作業する最先端の2D, 擬似3D, 3D法, および3D潜伏および3Dウェーブレット拡散モデルを修正し, 正常な脳組織を合成するよう訓練する。
評価の結果,擬似3次元モデルでは,構造相似指数,ピーク信号-雑音比,平均二乗誤差が最良であることがわかった。
論文 参考訳(メタデータ) (2024-03-21T15:52:05Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - DiffGAN-F2S: Symmetric and Efficient Denoising Diffusion GANs for
Structural Connectivity Prediction from Brain fMRI [15.40111168345568]
構造接続(SC)と機能的磁気共鳴イメージング(fMRI)の信頼性非直線マッピング関係を橋渡しすることは困難である
脳のfMRIからエンド・ツー・エンド・エンドの方法でSCを予測するために,新しい拡散生成逆ネットワークを用いたfMRI-to-SCモデルを提案する。
論文 参考訳(メタデータ) (2023-09-28T06:55:50Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。