論文の概要: Spiking Neural Network for Intra-cortical Brain Signal Decoding
- arxiv url: http://arxiv.org/abs/2504.09213v1
- Date: Sat, 12 Apr 2025 13:41:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:33.904639
- Title: Spiking Neural Network for Intra-cortical Brain Signal Decoding
- Title(参考訳): 皮質内脳信号復号のためのスパイクニューラルネットワーク
- Authors: Song Yang, Haotian Fu, Herui Zhang, Peng Zhang, Wei Li, Dongrui Wu,
- Abstract要約: 脳の信号を正確にかつ効率的に復号することは、皮質内脳-コンピュータインターフェースにとって不可欠である。
本稿では,脳内信号復号を効果的かつエネルギー効率よく行うためのスパイキングニューラルネットワーク(SNN)を提案する。
- 参考スコア(独自算出の注目度): 20.79539749730775
- License:
- Abstract: Decoding brain signals accurately and efficiently is crucial for intra-cortical brain-computer interfaces. Traditional decoding approaches based on neural activity vector features suffer from low accuracy, whereas deep learning based approaches have high computational cost. To improve both the decoding accuracy and efficiency, this paper proposes a spiking neural network (SNN) for effective and energy-efficient intra-cortical brain signal decoding. We also propose a feature fusion approach, which integrates the manually extracted neural activity vector features with those extracted by a deep neural network, to further improve the decoding accuracy. Experiments in decoding motor-related intra-cortical brain signals of two rhesus macaques demonstrated that our SNN model achieved higher accuracy than traditional artificial neural networks; more importantly, it was tens or hundreds of times more efficient. The SNN model is very suitable for high precision and low power applications like intra-cortical brain-computer interfaces.
- Abstract(参考訳): 脳の信号を正確にかつ効率的に復号することは、皮質内脳-コンピュータインターフェースにとって不可欠である。
従来の神経活動ベクトル特徴に基づく復号法では精度が低く,ディープラーニングに基づく手法では計算コストが高い。
そこで本研究では,脳内信号復号を効果的かつエネルギー効率よく行うためのスパイキングニューラルネットワーク(SNN)を提案する。
また,手動で抽出した神経活動ベクトル特徴を深層ニューラルネットワークで抽出した特徴量と統合し,復号精度を向上する特徴融合手法を提案する。
2つのアカゲザルの運動関連皮質内脳信号の復号実験により、我々のSNNモデルは従来の人工ニューラルネットワークよりも高い精度を達成できた。
SNNモデルは、皮質内脳-コンピュータインタフェースのような高精度で低消費電力の応用に非常に適している。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
ディープニューラルネットワーク(DNN)は、コンピュータビジョンアプリケーションにおいて大きな優位性を示している。
ここでは、主に2つの畳み込みニューラルネットワーク層を使用し、比較的少ないパラメータと高速で脳波からスペクトル時間的特徴を学習する浅層ニューラルネットワークを提案する。
実験の結果、浅いCNNモデルは他の全てのモデルより優れており、最高分類精度は90.68%に達した。
論文 参考訳(メタデータ) (2022-09-26T02:15:22Z) - HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks [0.0]
新しいハイブリッドニューラルネットワークアーキテクチャHybrid Binary Neural Network (Hybrid Binary Neural Network, HyBNN)を導入する。
HyBNNは、タスク非依存、一般、完全精度の変動型オートエンコーダと、タスク固有のバイナリニューラルネットワークで構成されている。
提案システムは,入力バイナライゼーションにより,バニラバイナリニューラルネットワークを著しく上回る性能を有することを示す。
論文 参考訳(メタデータ) (2022-05-19T20:27:01Z) - A Spiking Neural Network based on Neural Manifold for Augmenting
Intracortical Brain-Computer Interface Data [5.039813366558306]
脳-コンピュータインターフェース(BCI)は、脳内の神経信号をインストラクションに変換して外部デバイスを制御する。
高度な機械学習手法の出現により、脳-コンピュータインタフェースの能力はかつてないほど強化された。
ここでは、データジェネレータとしてスパイキングニューラルネットワーク(SNN)を用いる。
論文 参考訳(メタデータ) (2022-03-26T15:32:31Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。