論文の概要: Survival of the Optimized: An Evolutionary Approach to T-depth Reduction
- arxiv url: http://arxiv.org/abs/2504.09391v1
- Date: Sun, 13 Apr 2025 00:55:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:00.770033
- Title: Survival of the Optimized: An Evolutionary Approach to T-depth Reduction
- Title(参考訳): 最適化の生存:T深度低減への進化的アプローチ
- Authors: Archisman Ghosh, Avimita Chatterjee, Swaroop Ghosh,
- Abstract要約: 本稿では,回路層にまたがるほぼ最適Tゲートマージパターンを遺伝的アルゴリズム(GA)で探索する手法を提案する。
我々のフレームワークは、回路サイズやTゲート密度の異なる平均1.2倍の性能向上を実現している。
- 参考スコア(独自算出の注目度): 2.089191490381739
- License:
- Abstract: Quantum Error Correction (QEC) is essential for realizing practical Fault-Tolerant Quantum Computing (FTQC) but comes with substantial resource overhead. Quantum circuits must be compiled into the Clifford+T gate set, where the non-transversal nature of the T-gates necessitates costly magic distillation. As circuit complexity grows, so does the T-depth: the sequential T-gate layers, due to the decomposition of arbitrary rotations, further increasing the QEC demands. Optimizing T-depth poses two key challenges: it is NP-hard and existing solutions like greedy or brute-force algorithms are either suboptimal or computationally expensive. We address this by framing the problem as a search task and propose a Genetic Algorithm (GA)-based approach to discover near-optimal T-gate merge patterns across circuit layers. To improve upon convergence and solution quality, we incorporate a mathematical expansion scheme that facilitates reordering layers to identify better merge opportunities, along with a greedy initialization strategy based on T-gate density. Our method achieves up to 79.23% T-depth reduction and 41.86% T-count reduction in large circuits (90-100 qubits). Compared to state-of-the-art methods like the lookahead-based approach, our framework yields an average improvement of 1.2x across varying circuit sizes and T-gate densities. Our approach is hardware-agnostic making it compatible with diverse QEC architectures such as surface codes and QLDPCs, resulting in a scalable and practical optimization framework for near-term fault-tolerant quantum computing.
- Abstract(参考訳): 量子エラー補正(QEC)は、実用的なフォールトトレラント量子コンピューティング(FTQC)を実現するのに不可欠であるが、かなりのリソースオーバーヘッドが伴う。
量子回路はクリフォード+Tゲート集合にコンパイルされなければならないが、Tゲートの非可逆性は高価な魔法の蒸留を必要とする。
回路の複雑さが増すにつれて、T-深さ:任意の回転の分解によりシーケンシャルなT-ゲート層も増加し、QEC要求はさらに増加する。
T深度を最適化することは、NPハードであり、greedyやbrute-forceアルゴリズムのような既存のソリューションは、最適か計算コストのどちらかである。
探索課題としてこの問題に対処し,回路層にまたがる準最適Tゲートマージパターンを発見する遺伝的アルゴリズム(GA)に基づく手法を提案する。
収束性や解の質を改善するため,Tゲート密度に基づくグリーディーな初期化戦略とともに,階層の再順序付けを容易にする数学的拡張スキームを組み込んだ。
提案手法は, 最大79.23%のT深さ低減, 41.86%のT数削減を実現している(90-100 qubits)。
ルックアヘッド方式のような最先端の手法と比較すると,回路サイズやTゲート密度の異なる平均1.2倍の性能向上が得られる。
我々のアプローチはハードウェアに依存しないため、サーフェスコードやQLDPCといった様々なQECアーキテクチャと互換性があるため、短期的なフォールトトレラント量子コンピューティングのためのスケーラブルで実用的な最適化フレームワークが実現される。
関連論文リスト
- Depth scaling of unstructured search via quantum approximate optimization [0.0]
変分量子アルゴリズムは、現在の量子計算のデファクトモデルとなっている。
そのような問題の1つは、ある文字列の特定のビットを見つけることで構成される非構造化探索である。
我々は、CTQWを用いてQAOA配列を復元し、最近のトロッター公式の理論の進歩を利用して、クエリの複雑さを束縛する。
論文 参考訳(メタデータ) (2024-03-22T18:00:03Z) - Towards Efficient Quantum Computing for Quantum Chemistry: Reducing Circuit Complexity with Transcorrelated and Adaptive Ansatz Techniques [0.0]
この研究は、Transcorrelated (TC) アプローチと適応量子アンゼの併用による回路深さの低減方法を示す。
本研究は, 適応型アンサーゼとTC法を組み合わせることで, 小型, 耐雑音性, 容易に最適化できる量子回路が得られることを示す。
論文 参考訳(メタデータ) (2024-02-26T15:31:56Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms [3.990724104767043]
短期デバイスに実装された量子アルゴリズムは、ノイズと限定的な量子ビット接続による量子ビットマッピングを必要とする。
本稿では,アルゴリズム指向キュービットマッピング(AOQMAP)と呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T13:18:06Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates [2.4047296366832307]
ゲートベースの量子コンピューティングでは、トポロジー的な方法でタスクをゲートにマップすることを目的とするマッピング問題が存在する。
既存のタスクアプローチは、物理最適化アルゴリズムのいずれかに基づいており、異なるスピードとソリューション品質のトレードオフを提供する。
本稿では,Ising マシンを用いてトポロジ対応の代入問題を解くアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-21T19:46:59Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。