Capturing Longitudinal Changes in Brain Morphology Using Temporally Parameterized Neural Displacement Fields
- URL: http://arxiv.org/abs/2504.09514v1
- Date: Sun, 13 Apr 2025 10:38:00 GMT
- Title: Capturing Longitudinal Changes in Brain Morphology Using Temporally Parameterized Neural Displacement Fields
- Authors: Aisha L. Shuaibu, Kieran A. Gibb, Peter A. Wijeratne, Ivor J. A. Simpson,
- Abstract summary: We propose a novel longitudinal registration method that models structural changes using temporally parameterized neural displacement fields.<n>We demonstrate the effectiveness of our method on 4D brain MR registration.
- Score: 1.8124328823188356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Longitudinal image registration enables studying temporal changes in brain morphology which is useful in applications where monitoring the growth or atrophy of specific structures is important. However this task is challenging due to; noise/artifacts in the data and quantifying small anatomical changes between sequential scans. We propose a novel longitudinal registration method that models structural changes using temporally parameterized neural displacement fields. Specifically, we implement an implicit neural representation (INR) using a multi-layer perceptron that serves as a continuous coordinate-based approximation of the deformation field at any time point. In effect, for any N scans of a particular subject, our model takes as input a 3D spatial coordinate location x, y, z and a corresponding temporal representation t and learns to describe the continuous morphology of structures for both observed and unobserved points in time. Furthermore, we leverage the analytic derivatives of the INR to derive a new regularization function that enforces monotonic rate of change in the trajectory of the voxels, which is shown to provide more biologically plausible patterns. We demonstrate the effectiveness of our method on 4D brain MR registration.
Related papers
- Allostatic Control of Persistent States in Spiking Neural Networks for perception and computation [79.16635054977068]
We introduce a novel model for updating perceptual beliefs about the environment by extending the concept of Allostasis to the control of internal representations.<n>In this paper, we focus on an application in numerical cognition, where a bump of activity in an attractor network is used as a spatial numerical representation.
arXiv Detail & Related papers (2025-03-20T12:28:08Z) - SpaER: Learning Spatio-temporal Equivariant Representations for Fetal Brain Motion Tracking [6.417960463128722]
SpaER is a pioneering method for fetal motion tracking.
We develop an equivariant neural network that efficiently learns rigid motion sequences.
We validate our model using real fetal echo-planar images with simulated and real motions.
arXiv Detail & Related papers (2024-07-29T17:24:52Z) - The Role of Temporal Hierarchy in Spiking Neural Networks [2.0881857682885836]
Spiking Neural Networks (SNNs) have the potential for rich-temporal signal processing thanks to exploiting both spatial and temporal parameters.
Time constants have been recently shown to have computational benefits that help reduce the overall number of parameters required in the network.
To reduce the cost of optimization, architectural biases can be applied, in this case in the temporal domain.
We propose to impose a hierarchy of temporal representation in the hidden layers of SNNs, highlighting that such an inductive bias improves their performance.
arXiv Detail & Related papers (2024-07-26T16:00:20Z) - Neural Ordinary Differential Equation based Sequential Image Registration for Dynamic Characterization [13.492983263194636]
This extension work discusses how this framework can aid in the characterization of sequential biological processes.
Our framework considers voxels as particles within a dynamic system, defining deformation fields through the integration of neural differential equations.
We evaluated our framework on two clinical datasets: one for cardiac motion tracking and another for longitudinal brain MRI analysis.
arXiv Detail & Related papers (2024-04-02T17:04:45Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Neural Computed Tomography [1.7188280334580197]
Motion during acquisition of a set of projections can lead to significant motion artifacts in computed tomography reconstructions.
We propose a novel reconstruction framework, NeuralCT, to generate time-resolved images free from motion artifacts.
arXiv Detail & Related papers (2022-01-17T18:50:58Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Characterization of surface motion patterns in highly deformable soft
tissue organs from dynamic MRI: An application to assess 4D bladder motion [0.0]
The objective of this study is to go towards 3D dense velocity measurements to fully cover the entire surface.
We present a pipeline for characterization of bladder surface dynamics during deep respiratory movements.
arXiv Detail & Related papers (2020-10-05T08:38:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.