Subwavelength micromachined vapor-cell based Rydberg sensing
- URL: http://arxiv.org/abs/2504.09559v1
- Date: Sun, 13 Apr 2025 13:18:04 GMT
- Title: Subwavelength micromachined vapor-cell based Rydberg sensing
- Authors: Avital Giat, Kfir Levi, Ori Nefesh, Liron Stern,
- Abstract summary: Rydberg atomic quantum sensing has emerged as a powerful technique for broadband, non-invasive, and ultra-sensitive electrometry.<n>Here, we perform Rydberg spectroscopy using a wafer-scale fabricated Pyrex-Si-Pyrex cell with mm-scale dimensions.<n>Results highlight the potential of micromachined vapor cells for sub-wavelength electromagnetic field measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, micromachined vapor cells have been revolutionizing the field of chip-scale quantum sensors such as magnetometers and atomic clocks. In parallel, Rydberg atomic quantum sensing has emerged as a powerful technique for broadband, non-invasive, and ultra-sensitive electrometry. Yet, to date, Rydberg sensing has largely been limited to glass-blown, cm-scale vapor cells. Here, we perform Rydberg spectroscopy using a wafer-scale fabricated Pyrex-Si-Pyrex cell with mm-scale dimensions. The Rydberg spectroscopic line is characterized with respect to critical parameters such as temperature, the frequency and amplitude of the applied radiofrequency field, light intensity, and the spatial position of atom interrogation. Our study reveals lineshapes directly influenced by a complex landscape of electrostatic fields with values up to approximately $0.6\ \mathrm{V/cm}$. By controlling key parameters, we were able to reduce the effect of these internal electric fields and demonstrate the detection of RF fields with a sensitivity as low as $10\ \mu\mathrm{V/cm}$. These results highlight the potential of micromachined vapor cells for sub-wavelength electromagnetic field measurements, with applications in communications, near-field RF imaging, and chip-scale quantum technologies.
Related papers
- Quantum-enabled Rydberg atomic polarimetry of radio-frequency fields [37.69303106863453]
Rydberg atoms efficiently link photons between the radio-frequency (RF) and optical domains.<n>We investigate spectroscopic signatures owing to the angular momentum quantization of the atomic states.<n>Our study adds important insights into the prospects of Rydberg atomic polarimetry for quantum metrological electric field characterization.
arXiv Detail & Related papers (2025-03-23T09:13:36Z) - A Millimeter-Wave Superconducting Qubit [39.76747788992184]
A superconducting qubit is scaled up to the millimeter-wave range (near 100 GHz)
This has many advantages by removing the dependence on rare $3$He for refrigeration, simplifying cryogenic systems, and providing orders of magnitude higher cooling power.
This demonstration of a millimeter-wave quantum emitter offers exciting prospects for enhanced sensitivity thresholds in high-frequency photon detection.
arXiv Detail & Related papers (2024-11-17T20:38:17Z) - A Photonic Crystal Receiver for Rydberg Atom-Based Sensing [1.6183462687577213]
Rydberg atom-based sensors use atoms dressed by lasers to detect and measure radio frequency electromagnetic fields.
The best conventional radio frequency sensors still outperform Rydberg atom-based sensors with respect to sensitivity.
We introduce a passive, all-dielectric amplifier integrated into a Rydberg atom-based sensor vapor cell.
arXiv Detail & Related papers (2024-10-25T22:37:19Z) - Multichannel, ultra-wideband Rydberg Electrometry with an Optical Frequency Comb [39.876383980625235]
We show the use of a mid-infrared, frequency agile optical frequency comb as the coupling laser for three-photon Rydberg atom electrometry.
The generality and flexibility of this method for wideband multiplexing is anticipated to have transformative effects in the field of Rydberg electrometry.
arXiv Detail & Related papers (2024-09-09T19:22:28Z) - Metrology of microwave fields based on trap-loss spectroscopy with cold Rydberg atoms [32.73124984242397]
We demonstrate a new approach for the metrology of microwave fields based on the trap-loss-spectroscopy of cold Rydberg atoms in a magneto-optical trap.
Compared to state-of-the-art sensors using room-temperature vapors, cold atoms allow longer interaction times, better isolation from the environment and a reduced Doppler effect.
arXiv Detail & Related papers (2024-04-26T14:30:18Z) - Approaching the standard quantum limit of a Rydberg-atom microwave
electrometer [12.248913975876139]
The Rydberg electrometer has garnered considerable attention due to its exceptional sensitivity, small-size, and broad tunability.
The advanced Rydberg-atom microwave electrometer falls considerably short of the standard quantum limit by over three orders of magnitude.
Our study achieves an electric-field sensitivity of 10.0 nV/cm/Hz1/2 at a 100 Hz repetition rate, reaching a factor of 2.6 above the standard quantum limit and a minimum detectable field of 540 pV/cm.
arXiv Detail & Related papers (2023-07-28T15:26:45Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Rydberg atom-based field sensing enhancement using a split-ring
resonator [50.591267188664666]
We investigate the use of a split-ring resonator incorporated with an atomic-vapor cell to improve sensitivity and the minimal detectable electric field of Rydberg atom-based sensors.
By combining EIT with a heterodyne Rydberg atom-based mixer approach, the SRR allows for the a sensitivity of 5.5$mu$V/m$sqrtrm Hz$, which is two-orders of magnitude improvement in sensitivity than when the SRR is not used.
arXiv Detail & Related papers (2022-02-18T01:44:56Z) - High speed microcircuit and synthetic biosignal widefield imaging using
nitrogen vacancies in diamond [44.62475518267084]
We show how to image signals from a microscopic lithographically patterned circuit at the micrometer scale.
Using a new type of lock-in amplifier camera, we demonstrate sub-millisecond spatially resolved recovery of AC and pulsed electrical current signals.
Finally, we demonstrate as a proof of principle the recovery of synthetic signals replicating the exact form of signals in a biological neural network.
arXiv Detail & Related papers (2021-07-29T16:27:39Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - A robust fiber-based quantum thermometer coupled with nitrogen-vacancy
centers [29.359306535600815]
We present a robust fiber-based quantum thermometer which can significantly isolate the magnetic field noise and microwave power shift.
With a frequency modulation scheme, we realize the temperature measurement by detecting the variation of the sharp-dip in the zero-field optically detected magnetic resonance spectrum.
arXiv Detail & Related papers (2020-04-09T03:24:52Z) - Microwave electrometry via electromagnetically induced absorption in
cold Rydberg atoms [9.897318014645432]
Direct International System of Units (SI)-traceable and self-calibrated method for measuring a microwave electric field strength based on electromagnetically induced absorption (EIA) in cold Rydberg atoms.
A narrower linewidth of cold Rydberg EIA enables us to realize a direct SI-traceable microwave-electric-field measurement as small as $sim$100.
arXiv Detail & Related papers (2020-02-03T16:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.