AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations
- URL: http://arxiv.org/abs/2504.09662v1
- Date: Sun, 13 Apr 2025 17:26:35 GMT
- Title: AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations
- Authors: Jenny Ma, Riya Sahni, Karthik Sreedhar, Lydia B. Chilton,
- Abstract summary: We present AgentDynEx, an AI system that helps set up simulations from user-specified mechanics and dynamics.<n>A technical evaluation found that nudging enables simulations to have more complex mechanics and maintain its notable dynamics compared to simulations without nudging.
- Score: 12.492232195149661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent large language model simulations have the potential to model complex human behaviors and interactions. If the mechanics are set up properly, unanticipated and valuable social dynamics can surface. However, it is challenging to consistently enforce simulation mechanics while still allowing for notable and emergent dynamics. We present AgentDynEx, an AI system that helps set up simulations from user-specified mechanics and dynamics. AgentDynEx uses LLMs to guide users through a Configuration Matrix to identify core mechanics and define milestones to track dynamics. It also introduces a method called \textit{nudging}, where the system dynamically reflects on simulation progress and gently intervenes if it begins to deviate from intended outcomes. A technical evaluation found that nudging enables simulations to have more complex mechanics and maintain its notable dynamics compared to simulations without nudging. We discuss the importance of nudging as a technique for balancing mechanics and dynamics of multi-agent simulations.
Related papers
- GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - Inferring Articulated Rigid Body Dynamics from RGBD Video [18.154013621342266]
We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms.
Our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot.
arXiv Detail & Related papers (2022-03-20T08:19:02Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator [26.280021036447213]
Latent space that can capture dynamics related information has wide application in areas such as accelerating model free reinforcement learning.
We propose DiffSRL, a dynamic state representation learning pipeline utilizing differentiable simulation.
Our model demonstrates superior performance in terms of capturing long-term dynamics as well as reward prediction.
arXiv Detail & Related papers (2021-10-24T04:53:58Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.