BO-SA-PINNs: Self-adaptive physics-informed neural networks based on Bayesian optimization for automatically designing PDE solvers
- URL: http://arxiv.org/abs/2504.09804v1
- Date: Mon, 14 Apr 2025 02:07:45 GMT
- Title: BO-SA-PINNs: Self-adaptive physics-informed neural networks based on Bayesian optimization for automatically designing PDE solvers
- Authors: Rui Zhang, Liang Li, Stéphane Lanteri, Hao Kang, Jiaqi Li,
- Abstract summary: Physics-informed neural networks (PINNs) are a popular alternative method for solving partial differential equations (PDEs)<n>PINNs require dedicated manual modifications to the hyperparameters of the network, the sampling methods and loss function weights for different PDEs, which reduces the efficiency of the solvers.<n>We propose a general multi-stage framework, i.e. BO-SA-PINNs, to alleviate this issue.
- Score: 13.048817629665649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) is becoming a popular alternative method for solving partial differential equations (PDEs). However, they require dedicated manual modifications to the hyperparameters of the network, the sampling methods and loss function weights for different PDEs, which reduces the efficiency of the solvers. In this paper, we pro- pose a general multi-stage framework, i.e. BO-SA-PINNs to alleviate this issue. In the first stage, Bayesian optimization (BO) is used to select hyperparameters for the training process, and based on the results of the pre-training, the network architecture, learning rate, sampling points distribution and loss function weights suitable for the PDEs are automatically determined. The proposed hyperparameters search space based on experimental results can enhance the efficiency of BO in identifying optimal hyperparameters. After selecting the appropriate hyperparameters, we incorporate a global self-adaptive (SA) mechanism the second stage. Using the pre-trained model and loss information in the second-stage training, the exponential moving average (EMA) method is employed to optimize the loss function weights, and residual-based adaptive refinement with distribution (RAR-D) is used to optimize the sampling points distribution. In the third stage, L-BFGS is used for stable training. In addition, we introduce a new activation function that enables BO-SA-PINNs to achieve higher accuracy. In numerical experiments, we conduct comparative and ablation experiments to verify the performance of the model on Helmholtz, Maxwell, Burgers and high-dimensional Poisson equations. The comparative experiment results show that our model can achieve higher accuracy and fewer iterations in test cases, and the ablation experiments demonstrate the positive impact of every improvement.
Related papers
- RL-PINNs: Reinforcement Learning-Driven Adaptive Sampling for Efficient Training of PINNs [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs)
Their performance heavily relies on the strategy used to select training points.
We propose RL-PINNs, a reinforcement learning-driven adaptive sampling framework that enables efficient training with only a single round of sampling.
arXiv Detail & Related papers (2025-04-17T13:50:55Z) - Provably accurate adaptive sampling for collocation points in physics-informed neural networks [11.912466054588327]
Physics-informed Neural Networks (PINN) have emerged as an efficient way to learn surrogate solvers.<n>We introduce a provably accurate sampling method for collocation points based on the Hessian of the PDE residuals.
arXiv Detail & Related papers (2025-04-01T15:45:08Z) - PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations [5.4087282763977855]
We propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network.<n>Our approach uses trainable parameters for the mean and variance of each Gaussian, allowing for dynamic adjustment of their positions and shapes during training.<n> Experimental results show the competitive performance of our model across various PDEs, demonstrating its potential as a robust tool for solving complex PDEs.
arXiv Detail & Related papers (2024-12-08T16:58:29Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs [2.526490864645154]
We propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set.
The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile.
arXiv Detail & Related papers (2023-05-30T02:59:18Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
This paper investigates the feasibility of employing state-of-the-art probabilistic transformers in Bayesian optimisation.
We observe two drawbacks stemming from their training procedure and loss definition, hindering their direct deployment as proxies in black-box optimisation.
We introduce two components: 1) a BO-tailored training prior supporting non-uniformly distributed points, and 2) a novel approximate posterior regulariser trading-off accuracy and input sensitivity to filter favourable stationary points for improved predictive performance.
arXiv Detail & Related papers (2022-05-27T11:13:17Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli dropout (LBD) is a new model-agnostic dropout scheme that considers the dropout rates as parameters jointly optimized with other model parameters.
LBD leads to improved accuracy and uncertainty estimates in image classification and semantic segmentation.
arXiv Detail & Related papers (2020-02-12T18:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.