論文の概要: Virtual domain extension for imposing boundary conditions in flow simulation using pre-trained local neural operator
- arxiv url: http://arxiv.org/abs/2504.09807v1
- Date: Mon, 14 Apr 2025 02:18:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:12.195833
- Title: Virtual domain extension for imposing boundary conditions in flow simulation using pre-trained local neural operator
- Title(参考訳): 事前学習型局所ニューラル演算子を用いた流れシミュレーションにおける境界条件の仮想領域拡張
- Authors: Ximeng Ye, Hongyu Li, Zhen-Guo Yan,
- Abstract要約: 本稿では,LNOを用いた流れシミュレーションにおいて境界条件(BC)を付与する枠組みを構築した。
LNO推論中に計算領域の腐食特性を補うために拡張仮想ドメインを生成する。
フィールド値を計算するためのいくつかの戦略が提案され、数値的な例を解く際に有効である。
- 参考スコア(独自算出の注目度): 7.773086303468703
- License:
- Abstract: This paper builds up a virtual domain extension (VDE) framework for imposing boundary conditions (BCs) in flow simulation using pre-trained local neural operator (LNO). It creates extended virtual domains to the input function to compensate for the corrosion nature of computational domains during LNO inference, thus turns the implementation of BC into the determination of field values on the extended domain. Several strategies to calculate the field values are proposed and validated in solving numerical examples, including padding operation, direct imposition, pressure symmetry, and optimization by backpropagation, and compared with boundary imposition in traditional solvers. It is found that the large time interval of LNO induces a relatively wide near-boundary domain to be processed, thus imposing BC on only a few nodes near the boundary following the immersed boundary conception in traditional solvers can hardly achieve high accuracy. With appropriate values assigned on the extended virtual domains, VDE can accurately impose BCs and lead to reasonable flow field predictions. This work provides a guidance for imposing BCs reliably in LNO prediction, which could facilitate the reuse of pre-trained LNO in more applications.
- Abstract(参考訳): 本稿では,LNOを用いた流れシミュレーションにおいて,境界条件(BC)を付与する仮想ドメイン拡張(VDE)フレームワークを構築する。
入力関数に拡張仮想領域を生成し、LNO推論中に計算領域の腐食特性を補うことにより、BC の実装を拡張された領域上のフィールド値の決定に変換する。
パディング操作, 直接印加, 圧力対称性, バックプロパゲーションによる最適化など, 従来の解法における境界印加との比較などの数値例において, フィールド値を計算するためのいくつかの戦略を提案し, 検証した。
LNOの大きな時間間隔は、処理すべき比較的広い近傍境界領域を誘導し、従来の解法における没入境界概念の後に境界近傍の少数のノードにBCを付与することは、精度が良くない。
拡張仮想ドメインに適切な値が割り当てられると、VDE は BC を正確に強制し、合理的なフロー場予測につながる。
この研究は、LNO予測にBCGを確実に適用するためのガイダンスを提供し、より多くのアプリケーションで事前訓練されたLNOの再利用を促進することができる。
関連論文リスト
- Chaos into Order: Neural Framework for Expected Value Estimation of Stochastic Partial Differential Equations [0.9944647907864256]
本稿では,離散化の必要性を排除し,不確実性を明示的にモデル化するSPDE推定のための新しいニューラルネットワークフレームワークを提案する。
これは、SPDEの期待値を直接非分散的に推定できる最初のニューラルネットワークフレームワークであり、科学計算における一歩となる。
本研究は, ニューラルベースSPDEソルバの潜在可能性, 特に従来の手法が不安定な高次元問題に対する可能性を明らかにした。
論文 参考訳(メタデータ) (2025-02-05T23:27:28Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
我々は、ニューラルネットワークに厳しい制約を課すための一連のアプローチを開発する。
制約は、ニューラルネットワークとそのデリバティブに適用される線形作用素として指定することができる。
私たちのアプローチは、広範囲の現実世界のアプリケーションで実証されています。
論文 参考訳(メタデータ) (2023-06-15T08:33:52Z) - DMF-TONN: Direct Mesh-free Topology Optimization using Neural Networks [4.663709549795511]
本研究では、密度場近似ニューラルネットワークと変位場近似ニューラルネットワークを統合することで、トポロジ最適化を行うための直接メッシュフリー手法を提案する。
この直接積分手法は従来のトポロジ最適化手法に匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-06T18:04:51Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
我々はトンプソンサンプリング(TS)ポリシーに基づくブラックボックス最適化のための2つのアルゴリズムを提案する。
入力クエリを選択するには、NNをトレーニングし、トレーニングされたNNを最大化してクエリを選択するだけです。
我々のアルゴリズムは、大きなパラメータ行列を逆転する必要性を助長するが、TSポリシーの妥当性は保たれている。
論文 参考訳(メタデータ) (2022-10-13T09:01:58Z) - Local neural operator for solving transient partial differential
equations on varied domains [8.905324065830861]
そこで本稿では,PDE(Transient partial differential equation)の解法として局所ニューラル演算子(LNO)を提案する。
境界処理を含む便利な戦略が組み合わさり、1つの事前訓練されたLNOが、異なるドメインでのソリューションを予測することができる。
LNO はランダムに生成されたデータサンプルから Navier-Stokes 方程式を学習し、事前学習した LNO を明示的な数値マーチングスキームとして使用する。
論文 参考訳(メタデータ) (2022-03-11T06:41:51Z) - Neural network training under semidefinite constraints [0.0]
本稿では,ニューラルネットワーク(NN)の半定制約下でのトレーニングについて述べる。
半定値制約は、NNの興味深い特性を検証するのに使うことができる。
実験では,従来の手法よりも訓練方法が優れていることを示す。
論文 参考訳(メタデータ) (2022-01-03T13:10:49Z) - Fast Batch Nuclear-norm Maximization and Minimization for Robust Domain
Adaptation [154.2195491708548]
ランダムに選択されたデータバッチの分類出力行列の構造について検討し,予測可能性と多様性について検討した。
本稿では,目標出力行列上で核ノルムを行い,目標予測能力を向上するBatch Nuclear-norm Maximization and Minimizationを提案する。
実験により,本手法は3つの典型的なドメイン適応シナリオにおいて適応精度とロバスト性を高めることができることが示された。
論文 参考訳(メタデータ) (2021-07-13T15:08:32Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
本稿では,ニューラルネットワークを用いて境界値問題(BVP)を解くための伝達可能なフレームワークを提案する。
まず,任意の境界条件にまたがるbvpの解を推論できるニューラルネットワークであるgfnet(emphgenomic flow network)を提案する。
そこで我々は,GFNetの推論を組み立てたりステッチしたりする新しい反復アルゴリズムである emphmosaic flow (MF) 予測器を提案する。
論文 参考訳(メタデータ) (2021-04-22T05:20:27Z) - Improved Branch and Bound for Neural Network Verification via Lagrangian
Decomposition [161.09660864941603]
ニューラルネットワークの入出力特性を公式に証明するためのブランチとバウンド(BaB)アルゴリズムのスケーラビリティを改善します。
活性化に基づく新しい分岐戦略とBaBフレームワークであるブランチとデュアルネットワーク境界(BaDNB)を提案する。
BaDNBは、従来の完全検証システムを大きなマージンで上回り、対数特性で平均検証時間を最大50倍に削減した。
論文 参考訳(メタデータ) (2021-04-14T09:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。