Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
- URL: http://arxiv.org/abs/2504.09895v1
- Date: Mon, 14 Apr 2025 05:43:21 GMT
- Title: Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
- Authors: Shuai Zhao, Linchao Zhu, Yi Yang,
- Abstract summary: RefAlign is a versatile REINFORCE-style alignment algorithm free of reference and reward models.<n>It can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives.
- Score: 56.72693923645586
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models~(LLMs) are expected to be helpful, harmless, and honest. In various alignment scenarios, such as general human preference, safety, and confidence alignment, binary preference data collection and reward modeling are resource-intensive but necessary for human preference transferring. In this work, we explore using the similarity between sampled generations and high-quality reference answers as an alternative reward function for LLM alignment. Using similarity as a reward circumvents training reward models, and collecting a single reference answer potentially costs less time than constructing binary preference pairs when multiple candidates are available. Specifically, we develop \textit{RefAlign}, a versatile REINFORCE-style alignment algorithm, which is free of reference and reward models. Instead, RefAlign utilizes BERTScore between sampled generations and high-quality reference answers as the surrogate reward. Beyond general human preference optimization, RefAlign can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives. In various scenarios, {RefAlign} demonstrates comparable performance to previous alignment methods while offering high efficiency.
Related papers
- MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
We introduce MM-RLHF, a dataset containing $mathbf120k$ fine-grained, human-annotated preference comparison pairs.<n>We propose several key innovations to improve the quality of reward models and the efficiency of alignment algorithms.<n>Our approach is rigorously evaluated across $mathbf10$ distinct dimensions and $mathbf27$ benchmarks.
arXiv Detail & Related papers (2025-02-14T18:59:51Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - LRHP: Learning Representations for Human Preferences via Preference Pairs [45.056558199304554]
We introduce a preference representation learning task that aims to construct a richer and more structured representation of human preferences.
We verify the utility of preference representations in two downstream tasks: preference data selection and preference margin prediction.
arXiv Detail & Related papers (2024-10-06T14:48:28Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences [6.398937923320069]
We propose PAL, a framework to model human preference complementary to existing pretraining strategies.
We show that PAL achieves competitive reward model accuracy compared to strong baselines.
arXiv Detail & Related papers (2024-06-12T17:54:54Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
We propose a new axis based on eliciting preferences jointly over instruction-response pairs.<n>Joint preferences over instruction and response pairs can significantly enhance the alignment of large language models.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
We learn a model of the reward function that allows standard RL algorithms to achieve high expected return with as few expert queries as possible.
In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types.
We support our findings with extensive evaluations in multiple environments and with different types of queries.
arXiv Detail & Related papers (2021-02-24T18:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.