Beyond Scalar Reward Model: Learning Generative Judge from Preference Data
- URL: http://arxiv.org/abs/2410.03742v2
- Date: Sun, 13 Oct 2024 10:21:29 GMT
- Title: Beyond Scalar Reward Model: Learning Generative Judge from Preference Data
- Authors: Ziyi Ye, Xiangsheng Li, Qiuchi Li, Qingyao Ai, Yujia Zhou, Wei Shen, Dong Yan, Yiqun Liu,
- Abstract summary: Learning from preference feedback is a common practice for aligning large language models(LLMs) with human value.
Scalar models lack interpretability and are known to be susceptible to biases in datasets.
This paper investigates leveraging the generation capability of LLMs to address both limitations in one shot.
- Score: 26.219896368149236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from preference feedback is a common practice for aligning large language models~(LLMs) with human value. Conventionally, preference data is learned and encoded into a scalar reward model that connects a value head with an LLM to produce a scalar score as preference or reward. However, scalar models lack interpretability and are known to be susceptible to biases in datasets. This paper investigates leveraging the generation capability of LLMs to address both limitations in one shot. Specifically, we prompt the pre-trained LLM to generate positive and negative judgments, both supported with rationales in natural language form. The self-generated contrastive judgment pairs are used to train the generative judge with Direct Preference Optimization (DPO). This proposal of training the generative Judge using self-generated Contrastive judgments (Con-J) ensures natural interpretability due to the generated rationales together with the judgments, as well as high robustness against bias without the need for an additional reward head. Experimental results show that the performance of Con-J is comparable to the scalar reward model trained on the same collection of preference data, and demonstrate its superior interpretability and robustness in encoding human preferences.
Related papers
- Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
We introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality.
We train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations.
We show that the selected hybrid mixture achieves better reward model performance compared to using either one exclusively.
arXiv Detail & Related papers (2024-10-24T20:04:15Z) - CREAM: Consistency Regularized Self-Rewarding Language Models [34.325289477993586]
Self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to improve the alignment performance without the need of human annotations for preference data.
However, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data.
We propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the rewarding consistency across different iterations to regularize the self-rewarding training.
arXiv Detail & Related papers (2024-10-16T16:51:01Z) - General Preference Modeling with Preference Representations for Aligning Language Models [51.14207112118503]
We introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently.
We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.
Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
We show that large language models (LLMs) exhibit preference biases and worrying sensitivity to prompt designs.
Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO.
arXiv Detail & Related papers (2024-06-17T09:48:53Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Large Language Models are Biased Reinforcement Learners [0.0]
We show that large language models (LLMs) exhibit behavioral signatures of a relative value bias.
Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm.
arXiv Detail & Related papers (2024-05-19T01:43:52Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model.
Here, the underlying assumption is that the biased model resorts to shortcut features.
We introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts loss function.
arXiv Detail & Related papers (2023-02-06T15:21:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.