論文の概要: Assessing Judging Bias in Large Reasoning Models: An Empirical Study
- arxiv url: http://arxiv.org/abs/2504.09946v1
- Date: Mon, 14 Apr 2025 07:14:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:55.346286
- Title: Assessing Judging Bias in Large Reasoning Models: An Empirical Study
- Title(参考訳): 大規模推論モデルにおける判断バイアスの評価 : 実証的研究
- Authors: Qian Wang, Zhanzhi Lou, Zhenheng Tang, Nuo Chen, Xuandong Zhao, Wenxuan Zhang, Dawn Song, Bingsheng He,
- Abstract要約: DeepSeek-R1やOpenAI-o1のような大きな推論モデル(LRM)は、顕著な推論能力を示している。
本稿では、主観的嗜好アライメントデータセットと客観的事実ベースデータセットの両方において、LLMとLRMの偏りを判定するベンチマークを示す。
- 参考スコア(独自算出の注目度): 99.86300466350013
- License:
- Abstract: Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
- Abstract(参考訳): DeepSeek-R1やOpenAI-o1のような大きな推論モデル(LRM)は、顕著な推論能力を示し、LLM-as-a-judge設定における彼らのバイアスに関する重要な疑問を提起している。
本稿では、主観的嗜好アライメントデータセットと客観的事実ベースデータセットの両方において、LLMとLRMの偏りを判定する総合的なベンチマークを示す。
その結果,(1)先進的推論能力にもかかわらず, LRMsは上記のバイアスの影響を受けやすいこと, (2) LRMsは事実関連データセットにおいて, LLMsよりも優れた堅牢性を示すこと,(3) LRMsは顕著な位置バイアスを示し,次の位置での選択肢を優先すること,(4) 推論を模倣するフレーズがモデル判断に大きく影響すること,の4つが明らかになった。
これらのバイアスに対処するために、偏見を最大19%、ファクト関連データセットを最大14パーセント削減する専門システムプロンプト、選好タスクを最大27パーセント改善するが、現実的タスクに矛盾する結果を示すインコンテキスト学習、そして、選好データセットを最大10倍、ファクト関連データセットを最大16倍削減する自己回帰メカニズムを設計し、評価する。
我々の研究はより信頼性の高いLCM-as-a-Judgeフレームワークを開発する上で重要な洞察を与えます。
関連論文リスト
- Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
審査員としてのLLM(Large Language Models)とLLMに基づくデータ合成は、2つの基本的なLLM駆動型データアノテーション法として登場した。
本研究では, 合成データ生成器とLCMに基づく評価器の関連性に起因するLCM-as-a-judgeの汚染問題である選好リークを明らかにする。
論文 参考訳(メタデータ) (2025-02-03T17:13:03Z) - RAZOR: Sharpening Knowledge by Cutting Bias with Unsupervised Text Rewriting [16.633948320306832]
手動で構築されたデータセットで一般的なバイアスは、トークンとラベルの間に急激な相関をもたらす可能性がある。
既存のデバイアス法は、しばしば特定のデータセットバイアスに関する事前の知識に依存している。
本稿では,ショートカット緩和のためのテキスト書き直しに基づく,新規で教師なし,データ重視のデバイアス処理手法であるRAZORを提案する。
論文 参考訳(メタデータ) (2024-12-10T17:02:58Z) - LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
大規模言語モデル(LLM)は評価タスク、特に優先的に評価し、自己生成したコンテンツを好む場合に重大なバイアスを示す。
本研究では,この知識ギャップを,検索強化世代(RAG)フレームワークの2つの重要なフェーズをシミュレートすることによって解決する。
以上の結果とは対照的に,RAGフレームワークに有意な自己選好効果は認められなかった。
論文 参考訳(メタデータ) (2024-10-28T08:32:09Z) - Bias Similarity Across Large Language Models [32.0365189539138]
我々は2つのデータセット(4Kと100万の質問)を用いて複数の次元にわたる出力分布を通してバイアスを分析する。
結果から,微調整が出力分布に与える影響は最小限であり,プロプライエタリなモデルは未知として過度に応答し,バイアスを最小化し,精度と実用性を損なう傾向にあることがわかった。
Llama3-ChatやGemma2-itのようなオープンソースモデルは、GPT-4のようなプロプライエタリなモデルに匹敵する公平さを示し、大規模でクローズドソースなモデルは本質的にバイアスが小さいという仮定に挑戦する。
論文 参考訳(メタデータ) (2024-10-15T19:21:14Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Interpreting Bias in Large Language Models: A Feature-Based Approach [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクで顕著なパフォーマンスを示した。
本稿では, 特徴量に基づく新しい解析手法により, LLM内のバイアスの伝播について検討する。
論文 参考訳(メタデータ) (2024-06-18T07:28:15Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
本稿では,公正な機械学習データセットを包括的に分析し,不反射的手法がアルゴリズム的公正度発見の到達度と信頼性をいかに妨げているかを示す。
本分析では,(1)データと評価における特定の保護属性の表現のテクスブフラック,(2)データ前処理におけるマイノリティの広汎なテキストbf,(3)フェアネス研究の一般化を脅かすテキストbfopaqueデータ処理の3つの分野について検討した。
この研究は、公正なMLにおけるデータプラクティスの批判的な再評価の必要性を強調し、データセットのソーシングと使用の両方を改善するための指針を提供する。
論文 参考訳(メタデータ) (2024-04-26T09:51:24Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。