論文の概要: C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset
- arxiv url: http://arxiv.org/abs/2504.09958v1
- Date: Mon, 14 Apr 2025 07:55:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:53.438993
- Title: C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset
- Title(参考訳): C-MTCSD:中国のマルチターン会話スタンス検出データセット
- Authors: Fuqiang Niu, Yi Yang, Xianghua Fu, Genan Dai, Bowen Zhang,
- Abstract要約: C-MTCSDは中国最大のマルチターン会話姿勢検出データセットである。
最先端モデルでさえ、挑戦的なゼロショット設定で64.07%のF1スコアしか達成していない。
- 参考スコア(独自算出の注目度): 16.886319242255624
- License:
- Abstract: Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
- Abstract(参考訳): スタンス検出はソーシャルメディア上での公開討論の分析に欠かせないツールとなっている。
現在の手法は、特に中国語処理とマルチターン会話分析において重要な課題に直面している。
これらの制約に対処するため,中国最大のマルチターン会話姿勢検出データセットであるC-MTCSDを導入する。
従来のアプローチと大規模言語モデルの両方を用いた包括的な評価では、C-MTCSDの複雑さが明らかになっている。
従来のモデルは特に暗黙の姿勢検出に苦慮し、50%のF1スコアを達成している。
この研究は、中国のスタンス検出研究のための挑戦的な新しいベンチマークを確立し、将来の改善の大きな機会を浮き彫りにした。
関連論文リスト
- MMRC: A Large-Scale Benchmark for Understanding Multimodal Large Language Model in Real-World Conversation [52.35744453954844]
本稿では,MLLMの6つのコアオープンエンド能力を評価するベンチマークであるMMRCを紹介する。
MMRCにおける20個のMLLMの評価は、オープンエンド相互作用における精度低下を示している。
そこで我々は,会話から重要な情報を記録し,その応答中にモデルを思い出させる,シンプルで効果的なNOTE-TAKing戦略を提案する。
論文 参考訳(メタデータ) (2025-02-17T15:24:49Z) - ORCHID: A Chinese Debate Corpus for Target-Independent Stance Detection and Argumentative Dialogue Summarization [6.723531714964794]
オーラル・チャイナ・ディベート(Oral Chinese Debate)は、標的非依存の姿勢検出と議論の要約をベンチマークする最初の中国のデータセットである。
このデータセットは、中国語で476のユニークなトピックについて行われた1,218の現実世界の討論から成り、その内容は2,436のスタンス固有の要約と14,133の完全注釈付き発話を含む。
その結果、データセットの難易度が示され、議論対話の要約にスタンス検出を組み込むことの可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-17T15:28:27Z) - STOP! Benchmarking Large Language Models with Sensitivity Testing on Offensive Progressions [6.19084217044276]
大規模言語モデル(LLM)における明示的バイアスと暗黙的バイアスの緩和は、自然言語処理の分野において重要な焦点となっている。
我々は,2700のユニークな文を含む450の攻撃的進行を含む,攻撃的進行に関する感性テストデータセットを紹介した。
以上の結果から,最も優れたモデルでさえバイアスを不整合に検出し,成功率は19.3%から69.8%であった。
論文 参考訳(メタデータ) (2024-09-20T18:34:38Z) - Chain of Stance: Stance Detection with Large Language Models [3.528201746844624]
スタンス検出は自然言語処理(NLP)におけるアクティブタスクである
我々は、Stance (CoS) の textitChain と呼ばれる新しいプロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-08-03T16:30:51Z) - A Challenge Dataset and Effective Models for Conversational Stance Detection [26.208989232347058]
マルチターン会話姿勢検出データセット(textbfMT-CSD)を導入する。
本稿では,会話データに固有の長距離および短距離の依存関係に対処するグローバルローカルアテンションネットワーク(textbfGLAN)を提案する。
私たちのデータセットは、ドメイン間スタンス検出の進歩を触媒する貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-03-17T08:51:01Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZは音声TODのための大規模音声テキストデータセットである。
SpokenWOZでは、クロスターンスロットと推論スロット検出が新たな課題である。
論文 参考訳(メタデータ) (2023-05-22T13:47:51Z) - Cross-Lingual Speaker Identification Using Distant Supervision [84.51121411280134]
本稿では,文脈推論の欠如や言語間一般化の低さといった問題に対処する話者識別フレームワークを提案する。
その結果,2つの英語話者識別ベンチマークにおいて,従来の最先端手法よりも9%の精度,5%の精度で性能が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-11T20:49:44Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
COLDatasetは、37kの注釈付き文を持つ中国の攻撃的言語データセットである。
また、人気のある中国語モデルの出力攻撃性を研究するために、textscCOLDetectorを提案する。
我々の資源と分析は、中国のオンラインコミュニティを解毒し、生成言語モデルの安全性を評価することを目的としている。
論文 参考訳(メタデータ) (2022-01-16T11:47:23Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
談話の適切な処理は機械翻訳(MT)の品質に大きく貢献する
文脈認識型MTにおける最近の研究は、評価中に少量の談話現象を標的にしようとしている。
談話現象のモデル性能を識別・評価するタグの集合である,多言語談話認識ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-09-15T17:29:30Z) - Few-Shot Cross-Lingual Stance Detection with Sentiment-Based
Pre-Training [32.800766653254634]
本研究は,現在までの言語間スタンス検出に関する最も包括的な研究である。
6つの言語ファミリーの12言語で15の多様なデータセットを使用します。
実験では,新しいラベルエンコーダの追加を提案し,パターン探索トレーニングを構築した。
論文 参考訳(メタデータ) (2021-09-13T15:20:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。