Undermining Federated Learning Accuracy in EdgeIoT via Variational Graph Auto-Encoders
- URL: http://arxiv.org/abs/2504.10067v1
- Date: Mon, 14 Apr 2025 10:09:38 GMT
- Title: Undermining Federated Learning Accuracy in EdgeIoT via Variational Graph Auto-Encoders
- Authors: Kai Li, Shuyan Hu, Bochun Wu, Sai Zou, Wei Ni, Falko Dressler,
- Abstract summary: EdgeIoT brings mobile edge computing with Internet of Things (IoT) devices, allowing for data processing close to the data source.<n>Federated learning allows each device to upload a shared machine-learning model update with locally processed data.<n>This paper introduces a new attack method targeting federated learning in EdgeIoT, known as data-independent model manipulation attack.
- Score: 23.39841886729196
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: EdgeIoT represents an approach that brings together mobile edge computing with Internet of Things (IoT) devices, allowing for data processing close to the data source. Sending source data to a server is bandwidth-intensive and may compromise privacy. Instead, federated learning allows each device to upload a shared machine-learning model update with locally processed data. However, this technique, which depends on aggregating model updates from various IoT devices, is vulnerable to attacks from malicious entities that may inject harmful data into the learning process. This paper introduces a new attack method targeting federated learning in EdgeIoT, known as data-independent model manipulation attack. This attack does not rely on training data from the IoT devices but instead uses an adversarial variational graph auto-encoder (AV-GAE) to create malicious model updates by analyzing benign model updates intercepted during communication. AV-GAE identifies and exploits structural relationships between benign models and their training data features. By manipulating these structural correlations, the attack maximizes the training loss of the federated learning system, compromising its overall effectiveness.
Related papers
- FedSAUC: A Similarity-Aware Update Control for Communication-Efficient Federated Learning in Edge Computing [0.0]
Federated learning is applied to edge devices such as smartphones, wearable devices, and Internet of Things (IoT) devices.<n>We propose an update control for federated learning, FedSAUC, by considering the similarity of users' behaviors.<n>Experiments show that this update control will not affect the training accuracy in the long run.
arXiv Detail & Related papers (2025-04-07T09:21:43Z) - Sky of Unlearning (SoUL): Rewiring Federated Machine Unlearning via Selective Pruning [1.6818869309123574]
Federated learning (FL) enables drones to train machine learning models in a decentralized manner while preserving data privacy.<n> Federated unlearning (FU) mitigates these risks by eliminating adversarial data contributions.<n>This paper proposes sky of unlearning (SoUL), a federated unlearning framework that efficiently removes the influence of unlearned data while maintaining model performance.
arXiv Detail & Related papers (2025-04-02T13:07:30Z) - FedSR: A Semi-Decentralized Federated Learning Algorithm for Non-IIDness in IoT System [2.040586739710704]
In the Industrial Internet of Things (IoT), a large amount of data will be generated every day.
Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models.
In this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework.
arXiv Detail & Related papers (2024-03-19T09:34:01Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
False data injection attack (FDIA) is one of the classes of attacks that target the smart measurement devices by injecting malicious data.
We propose a federated learning-based scheme combined with a hybrid deep neural network architecture.
We validate the proposed architecture by extensive simulations on the IEEE 57, 118, and 300 bus systems and real electricity load data.
arXiv Detail & Related papers (2023-06-17T20:29:55Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.