論文の概要: A Survey of Personalization: From RAG to Agent
- arxiv url: http://arxiv.org/abs/2504.10147v1
- Date: Mon, 14 Apr 2025 11:57:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:37.538841
- Title: A Survey of Personalization: From RAG to Agent
- Title(参考訳): パーソナライズに関する調査:RAGからエージェントへ
- Authors: Xiaopeng Li, Pengyue Jia, Derong Xu, Yi Wen, Yingyi Zhang, Wenlin Zhang, Wanyu Wang, Yichao Wang, Zhaocheng Du, Xiangyang Li, Yong Liu, Huifeng Guo, Ruiming Tang, Xiangyu Zhao,
- Abstract要約: パーソナライゼーションは現代のAIシステムにおいて不可欠な機能となり、個々のユーザの好みやコンテキスト、目標に合わせてカスタマイズされたインタラクションを可能にしている。
最近の研究は、ユーザ満足度を高めるために、Retrieval-Augmented Generation (RAG)フレームワークと、パーソナライズされた設定内のより高度なエージェントベースのアーキテクチャへの進化に集中している。
本調査は,RAGの3段階(検索前,検索後,生成前)のパーソナライゼーションを体系的に検討した。
- 参考スコア(独自算出の注目度): 48.34245916821302
- License:
- Abstract: Personalization has become an essential capability in modern AI systems, enabling customized interactions that align with individual user preferences, contexts, and goals. Recent research has increasingly concentrated on Retrieval-Augmented Generation (RAG) frameworks and their evolution into more advanced agent-based architectures within personalized settings to enhance user satisfaction. Building on this foundation, this survey systematically examines personalization across the three core stages of RAG: pre-retrieval, retrieval, and generation. Beyond RAG, we further extend its capabilities into the realm of Personalized LLM-based Agents, which enhance traditional RAG systems with agentic functionalities, including user understanding, personalized planning and execution, and dynamic generation. For both personalization in RAG and agent-based personalization, we provide formal definitions, conduct a comprehensive review of recent literature, and summarize key datasets and evaluation metrics. Additionally, we discuss fundamental challenges, limitations, and promising research directions in this evolving field. Relevant papers and resources are continuously updated at https://github.com/Applied-Machine-Learning-Lab/Awesome-Personalized-RAG-Agent.
- Abstract(参考訳): パーソナライゼーションは現代のAIシステムにおいて不可欠な機能となり、個々のユーザの好みやコンテキスト、目標に合わせてカスタマイズされたインタラクションを可能にする。
最近の研究は、ユーザ満足度を高めるために、Retrieval-Augmented Generation (RAG)フレームワークと、パーソナライズされた設定内のより高度なエージェントベースのアーキテクチャへの進化に集中している。
本研究は,RAGの3段階(事前検索,検索,生成)のパーソナライゼーションを体系的に検討する。
RAG以外にも、ユーザ理解、パーソナライズされた計画と実行、動的生成を含むエージェント機能を備えた従来のRAGシステムを拡張したパーソナライズされたLLMベースのエージェントの領域にも拡張する。
RAGにおけるパーソナライズとエージェントベースのパーソナライズの両方のために、フォーマルな定義を提供し、最近の文献を包括的にレビューし、主要なデータセットと評価指標を要約する。
さらに、この発展途上の分野における根本的な課題、限界、そして有望な研究方向性について論じる。
関連論文とリソースはhttps://github.com/Applied-Machine-Learning-Lab/Awesome-Personalized-RAG-Agentで継続的に更新される。
関連論文リスト
- Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
ユーザ中心の知識グラフを利用してパーソナライゼーションを強化するフレームワークを提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストにプロンプトを拡大することにより、PGraphはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-04T01:46:49Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
重要な課題を特定し,今後の研究方向性を提案する。
この調査が(M)LLMベースのGUIエージェントの分野におけるさらなる進歩を促すことを願っている。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Agentic Retrieval-Augmented Generation for Time Series Analysis [0.0]
本稿では,時系列解析のためのエージェント検索拡張フレームワークを提案する。
提案したモジュール型マルチエージェントRAGアプローチは、柔軟性を提供し、主要な時系列タスクに対してより最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-08-18T11:47:55Z) - The Oscars of AI Theater: A Survey on Role-Playing with Language Models [38.68597594794648]
本調査では,言語モデルを用いたロールプレイングの急成長分野について検討する。
それは、初期のペルソナモデルから、Large Language Models(LLMs)によって促進される高度なキャラクタ駆動シミュレーションまでの開発に焦点を当てている。
データやモデル,アライメント,エージェントアーキテクチャ,評価など,これらのシステムを設計する上で重要なコンポーネントを包括的に分類する。
論文 参考訳(メタデータ) (2024-07-16T08:20:39Z) - PersonaRAG: Enhancing Retrieval-Augmented Generation Systems with User-Centric Agents [0.9135658693137204]
本稿では,リアルタイムなユーザデータとインタラクションに基づく検索と生成にユーザ中心のエージェントを取り入れた新しいフレームワークであるPersonaRAGを紹介する。
その結果,ユーザ適応型情報検索システムにおける有望な方向性が示唆された。
論文 参考訳(メタデータ) (2024-07-12T16:18:00Z) - From Persona to Personalization: A Survey on Role-Playing Language Agents [52.783043059715546]
大規模言語モデル(LLM)の最近の進歩はロールプレイング言語エージェント(RPLA)の台頭を後押ししている。
RPLAは、人間の類似性と鮮明なロールプレイングパフォーマンスの素晴らしい感覚を達成します。
彼らは感情的な仲間、インタラクティブなビデオゲーム、パーソナライズされたアシスタント、コピロなど、多くのAI応用を触媒してきた。
論文 参考訳(メタデータ) (2024-04-28T15:56:41Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
我々の目標は、マルチモーダルパーソナライゼーションシステム(UniMP)のための統一パラダイムを確立することである。
我々は、幅広いパーソナライズされたニーズに対処できる汎用的でパーソナライズされた生成フレームワークを開発する。
我々の手法は、パーソナライズされたタスクのための基礎言語モデルの能力を高める。
論文 参考訳(メタデータ) (2024-03-15T20:21:31Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。