論文の概要: MSCoT: Structured Chain-of-Thought Generation for Multiple Programming Languages
- arxiv url: http://arxiv.org/abs/2504.10178v1
- Date: Mon, 14 Apr 2025 12:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:10.944278
- Title: MSCoT: Structured Chain-of-Thought Generation for Multiple Programming Languages
- Title(参考訳): MSCoT: 複数のプログラミング言語のための構造化連鎖生成
- Authors: Naizhu Jin, Zhong Li, Tian Zhang, Qingkai Zeng,
- Abstract要約: CoT(Chain-of-Thought)推論は、コード生成モデルの再トレーニングや微調整を必要とせずに、モデルのパフォーマンスを大幅に改善することができる。
既存のCoT生成メソッドは主にPythonコードに集中しており、他のプログラミング言語のパフォーマンスは未定である。
- 参考スコア(独自算出の注目度): 17.36458017234638
- License:
- Abstract: With the rapid development of code intelligence, the application of multiple programming languages is becoming increasingly widespread. However, most existing code generation models mainly focus on a single or a few programming languages, resulting in unsatisfactory performance in a multilingual environment. Chain-of-Thought (CoT) reasoning can significantly improve the performance of the model without the need for retraining or fine-tuning the code generation model by reasonably decomposing complex code generation tasks into multiple subtasks and gradually deriving solutions for each subtask. Nevertheless, the existing CoT generation methods mainly concentrate on Python code, and the performance on other programming languages remains unclear. To fill this gap, we first constructed a CoT generation dataset for 12 programming languages through multi-agent technology. On this basis, we proposed a CoT generation method MSCoT applicable to multiple programming languages. By introducing CoT into the code generation large model, the performance of the code generation large model in a multilingual environment can be improved. Through large-scale empirical research, we compared the generalization abilities of MSCoT and the existing CoT generation methods on multiple programming languages and proved the effectiveness of MSCoT for multiple programming languages. In addition, we also designed a human study to prove the quality of the CoT generated by MSCoT. Finally, we opensourced the model and dataset of MSCoT to promote the research on CoT generation for multiple programming languages.
- Abstract(参考訳): コードインテリジェンスの急速な発展に伴い、複数のプログラミング言語の応用がますます広まりつつある。
しかし、既存のコード生成モデルは、主に1つまたは少数のプログラミング言語に焦点を当てており、多言語環境では不満足なパフォーマンスをもたらす。
CoT(Chain-of-Thought)推論は、複雑なコード生成タスクを複数のサブタスクに合理的に分解し、各サブタスクに対して徐々にソリューションを導出することにより、コード生成モデルの再トレーニングや微調整を必要とせずに、モデルの性能を大幅に向上させることができる。
それにもかかわらず、既存のCoT生成メソッドは主にPythonコードに集中しており、他のプログラミング言語のパフォーマンスは未だに不明である。
このギャップを埋めるために、私たちはまず、マルチエージェント技術を用いて12のプログラミング言語のためのCoT生成データセットを構築しました。
そこで我々は,複数のプログラミング言語に適用可能なCoT生成手法MSCoTを提案する。
コード生成大モデルにCoTを導入することにより、多言語環境におけるコード生成大モデルの性能を向上させることができる。
大規模な実証研究を通じて、MSCoTの一般化能力と既存のCoT生成手法を複数のプログラミング言語で比較し、MSCoTの有効性を実証した。
また,MSCoTが生成するCoTの品質を証明するために,人間による研究も設計した。
最後に、MSCoTのモデルとデータセットをオープンソース化し、複数のプログラミング言語に対するCoT生成の研究を促進する。
関連論文リスト
- Multi-Programming Language Ensemble for Code Generation in Large Language Model [5.882816711878273]
大規模言語モデル(LLM)は、特にワンパスコード生成において、コード生成を大幅に改善した。
既存のアプローチのほとんどは、単一のプログラミング言語でコードを生成することだけに重点を置いており、LLMの多言語機能を活用する可能性を見越している。
本稿では,複数の言語にまたがるコード生成を利用して全体的な性能を向上させる,新しいアンサンブルに基づくMulti-Programming Language Ensemble (MPLE)を提案する。
論文 参考訳(メタデータ) (2024-09-06T08:31:18Z) - Large Language Models for cross-language code clone detection [3.5202378300682162]
言語間のコードクローン検出は、ソフトウェアエンジニアリングコミュニティ内で注目を集めている。
機械学習の大幅な進歩にインスパイアされた本論文では、言語間コードクローン検出を再考する。
言語間コードクローンの識別のための5つの大言語モデル (LLM) と8つのプロンプト (08) の性能評価を行った。
論文 参考訳(メタデータ) (2024-08-08T12:57:14Z) - mCoT: Multilingual Instruction Tuning for Reasoning Consistency in Language Models [21.616940026409818]
大規模言語モデル(LLM)とChain-of-Thought(CoT)は、最近、下流タスクを改善するために推論を誘発する強力なテクニックとして登場した。
オープンソース LLM を用いて,多言語間の多言語推論の整合性について検討する。
言語間の推論能力を向上させるため,多言語CoT命令チューニングを導入し,モデルの整合性を向上させる。
論文 参考訳(メタデータ) (2024-06-04T13:30:45Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
本研究では、コンパイラ中間表現(IR)を活用して、Code-LMの多言語機能を改善する可能性について検討する。
まず,約400万のソースコードファイルからなる並列データセットであるSLTransをコンパイルする。
次に、SLTransにおける因果言語モデリングトレーニングを継続して実施し、Code-LMはIR言語を学習せざるを得なかった。
IRCoderと呼ばれる結果のモデルは、さまざまなコード生成タスクやメトリクスに対して、サイズと一貫性のあるゲインを表示します。
論文 参考訳(メタデータ) (2024-03-06T17:52:08Z) - Chain-of-Thought in Neural Code Generation: From and For Lightweight Language Models [22.392809555644646]
大規模言語モデル(LLM)は、コード生成において顕著な可能性を示している。
本研究では,100億未満のパラメータを持つと定義される軽量言語モデル (lLM) について検討する。
これらの知見に基づいて,思考の連鎖(CoTs)を自動生成する lLM を利用した新しいアプローチ COTTON を設計する。
その結果,COTTONが生成するCoTsは,自動評価と人的評価の指標において,ベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-09T12:20:50Z) - AdaCCD: Adaptive Semantic Contrasts Discovery Based Cross Lingual
Adaptation for Code Clone Detection [69.79627042058048]
AdaCCDは、その言語でアノテーションを使わずに、新しい言語のクローンコードを検出する新しい言語間適応手法である。
5つのプログラミング言語からなる多言語コードクローン検出ベンチマークを構築し,AdaCCDの言語間適応性を評価する。
論文 参考訳(メタデータ) (2023-11-13T12:20:48Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
本稿では,MBXPとMultilingual HumanEval,MathQA-Xという,評価コード生成モデルに関する新しいベンチマークを提案する。
これらのデータセットは10以上のプログラミング言語をカバーする。
コード生成モデルの性能を多言語で評価することができる。
論文 参考訳(メタデータ) (2022-10-26T17:17:06Z) - MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages [76.93265104421559]
英語以外の自然言語コマンドからコード生成をベンチマークします。
スペイン語,日本語,ロシア語の3言語で896個のNLコードペアを注釈した。
難易度はこれらの3つの言語によって異なるが、全てのシステムは英語にかなり遅れている。
論文 参考訳(メタデータ) (2022-03-16T04:21:50Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。