論文の概要: CoDet-M4: Detecting Machine-Generated Code in Multi-Lingual, Multi-Generator and Multi-Domain Settings
- arxiv url: http://arxiv.org/abs/2503.13733v1
- Date: Mon, 17 Mar 2025 21:41:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:16:48.251868
- Title: CoDet-M4: Detecting Machine-Generated Code in Multi-Lingual, Multi-Generator and Multi-Domain Settings
- Title(参考訳): CoDet-M4:マルチランガル,マルチジェネレータ,マルチドメイン設定におけるマシン生成コード検出
- Authors: Daniil Orel, Dilshod Azizov, Preslav Nakov,
- Abstract要約: 大規模言語モデル(LLM)はコード生成に革命をもたらし、プログラミングを驚くほどの効率で自動化した。
これらの進歩はプログラミングのスキル、倫理、評価の整合性に挑戦し、説明責任と標準を維持するのに欠かせないLCM生成コードを検出する。
複数のプログラミング言語、コードジェネレータ、ドメインにまたがる人間とLLMで書かれたコードを区別できるフレームワークを提案する。
- 参考スコア(独自算出の注目度): 32.72039589832989
- License:
- Abstract: Large language models (LLMs) have revolutionized code generation, automating programming with remarkable efficiency. However, these advancements challenge programming skills, ethics, and assessment integrity, making the detection of LLM-generated code essential for maintaining accountability and standards. While, there has been some research on this problem, it generally lacks domain coverage and robustness, and only covers a small number of programming languages. To this end, we propose a framework capable of distinguishing between human- and LLM-written code across multiple programming languages, code generators, and domains. We use a large-scale dataset from renowned platforms and LLM-based code generators, alongside applying rigorous data quality checks, feature engineering, and comparative analysis using evaluation of traditional machine learning models, pre-trained language models (PLMs), and LLMs for code detection. We perform an evaluation on out-of-domain scenarios, such as detecting the authorship and hybrid authorship of generated code and generalizing to unseen models, domains, and programming languages. Moreover, our extensive experiments show that our framework effectively distinguishes human- from LLM-written code and sets a new benchmark for this task.
- Abstract(参考訳): 大規模言語モデル(LLM)はコード生成に革命をもたらし、プログラミングを驚くほどの効率で自動化した。
しかし、これらの進歩はプログラミングのスキル、倫理、評価の整合性に挑戦し、説明責任と基準を維持するのに欠かせないLCM生成コードの検出を可能にした。
この問題にはいくつかの研究があるが、一般的にドメインカバレッジと堅牢性が欠如しており、少数のプログラミング言語しかカバーしていない。
そこで本研究では,複数のプログラミング言語,コードジェネレータ,ドメインにまたがる人間とLLMを区別可能なフレームワークを提案する。
我々は、従来の機械学習モデル、プレトレーニング言語モデル(PLM)、およびコード検出のためのLLMの評価を用いて、厳密なデータ品質チェック、特徴工学、比較分析を適用するとともに、著名なプラットフォームとLLMベースのコードジェネレータからの大規模なデータセットを使用する。
生成したコードのオーサシップとハイブリッドオーサシップの検出や,目に見えないモデルやドメイン,プログラミング言語への一般化など,ドメイン外シナリオの評価を行う。
さらに,我々のフレームワークはLLMで書かれたコードと人間を効果的に区別し,このタスクに新たなベンチマークを設定できることを示す。
関連論文リスト
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [14.458529723566379]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - Multi-Programming Language Ensemble for Code Generation in Large Language Model [5.882816711878273]
大規模言語モデル(LLM)は、特にワンパスコード生成において、コード生成を大幅に改善した。
既存のアプローチのほとんどは、単一のプログラミング言語でコードを生成することだけに重点を置いており、LLMの多言語機能を活用する可能性を見越している。
本稿では,複数の言語にまたがるコード生成を利用して全体的な性能を向上させる,新しいアンサンブルに基づくMulti-Programming Language Ensemble (MPLE)を提案する。
論文 参考訳(メタデータ) (2024-09-06T08:31:18Z) - Examination of Code generated by Large Language Models [35.51378656555693]
大規模言語モデル(LLM)は、コード生成を自動化することでソフトウェア開発を変革している。
高品質のコード生成におけるLCMの現状を評価するため,ChatGPTとCopilotを用いた制御実験を行った。
言語間, アルゴリズムとテストコード間, 時間とともに, LLM間で有意な差異が認められた。
論文 参考訳(メタデータ) (2024-08-29T15:12:16Z) - Large Language Models for cross-language code clone detection [3.5202378300682162]
言語間のコードクローン検出は、ソフトウェアエンジニアリングコミュニティ内で注目を集めている。
機械学習の大幅な進歩にインスパイアされた本論文では、言語間コードクローン検出を再考する。
言語間コードクローンの識別のための5つの大言語モデル (LLM) と8つのプロンプト (08) の性能評価を行った。
論文 参考訳(メタデータ) (2024-08-08T12:57:14Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保持するために追加情報を挿入する。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
本稿では,MBXPとMultilingual HumanEval,MathQA-Xという,評価コード生成モデルに関する新しいベンチマークを提案する。
これらのデータセットは10以上のプログラミング言語をカバーする。
コード生成モデルの性能を多言語で評価することができる。
論文 参考訳(メタデータ) (2022-10-26T17:17:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。