Vision based driving agent for race car simulation environments
- URL: http://arxiv.org/abs/2504.10266v1
- Date: Mon, 14 Apr 2025 14:29:37 GMT
- Title: Vision based driving agent for race car simulation environments
- Authors: Gergely Bári, László Palkovics,
- Abstract summary: The paper outlines the formulation of the task of time optimal driving on a race track as a deep reinforcement learning problem.<n>The results demonstrate human-like learning and driving behavior that utilize maximum tire grip potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, autonomous driving has become a popular field of study. As control at tire grip limit is essential during emergency situations, algorithms developed for racecars are useful for road cars too. This paper examines the use of Deep Reinforcement Learning (DRL) to solve the problem of grip limit driving in a simulated environment. Proximal Policy Optimization (PPO) method is used to train an agent to control the steering wheel and pedals of the vehicle, using only visual inputs to achieve professional human lap times. The paper outlines the formulation of the task of time optimal driving on a race track as a deep reinforcement learning problem, and explains the chosen observations, actions, and reward functions. The results demonstrate human-like learning and driving behavior that utilize maximum tire grip potential.
Related papers
- Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [50.936478241688114]
Nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods.<n>We propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure.<n>Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Adversarial Deep Reinforcement Learning for Trustworthy Autonomous
Driving Policies [5.254093731341154]
We show that adversarial examples can be used to help autonomous cars improve their deep reinforcement learning policies.
By using a high fidelity urban driving simulation environment and vision-based driving agents, we demonstrate that the autonomous cars retrained using the adversary player noticeably increase the performance of their driving policies.
arXiv Detail & Related papers (2021-12-22T15:00:16Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
We present a reinforcement learning-based solution to autonomously race on a miniature race car platform.
We show that a policy that is trained purely in simulation can be successfully transferred to the real robotic setup.
arXiv Detail & Related papers (2020-11-26T14:58:49Z) - Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement
Learning [39.719051858649216]
We propose a learning-based system for autonomous car racing by leveraging a high-fidelity physical car simulation.
We deploy our system in Gran Turismo Sport, a world-leading car simulator known for its realistic physics simulation of different race cars and tracks.
Our trained policy achieves autonomous racing performance that goes beyond what had been achieved so far by the built-in AI.
arXiv Detail & Related papers (2020-08-18T15:06:44Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
We present a maneuver planning module able to negotiate the entering in busy roundabouts.
The proposed module is based on a neural network trained to predict when and how entering the roundabout throughout the whole duration of the maneuver.
arXiv Detail & Related papers (2020-01-03T11:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.